Tag Archives: Rilpivirin

6.3. ART 2011/2012: Hinterm Horizont geht’s weiter

– Christian Hoffmann –

Mit dem PI Darunavir, dem NNRTI Etravirin, dem Integrasehemmer Raltegravir und dem Korezeptorantagonisten Maraviroc wurden in den letzten Jahren wichtige neue Substanzen zugelassen. Fast alle HIV-Patienten können nun wieder suffizient behandelt werden – darunter selbst jene, bei denen man angesichts multipler Resistenzen beinahe schon die Hoffnung aufgegeben hatte, das die Viruslast sich noch überhaupt jemals wieder unter die Nachweisgrenze würde drücken lassen. Ein „austherapiert“ gibt es nicht mehr. Doch trotz aller Fortschritte besteht weiterhin ein Bedarf an neuen Medikamenten. Und zwar nicht nur für die wenigen Patienten, bei denen auch die neuen Wirkstoffklassen nicht wirken, sondern grundsätzlich für alle Patienten. Eine HIV-Therapie ist nach dem jetzigen Stand lebenslang einzunehmen. Lebenslang bedeutet dabei jedoch nicht Monate oder Jahre, sondern Jahrzehnte – was erhebliche Probleme mit Compliance und Langzeittoxizitäten erwarten lässt. Deshalb ist jedes neue Medikament willkommen und wichtig. Die Auswahl muss weiter wachsen. Neue Medikamente müssen entwickelt werden, die weniger toxisch und einfacher einzunehmen sind. Um dem Fernziel Eradikation näher zu kommen, sollten sie möglichst potenter sein als die heutigen.

Es folgt – ohne Gewähr auf Vollständigkeit – eine Übersicht über die Substanzen, die nach dem heutigen Stand (April 2011) das meiste versprechen.

Neue Pharmakoenhancer (PKEs)

Viele antiretrovirale Medikamente, darunter fast alle PIs, aber auch einige neue Substanzen wie Vicriviroc oder Elvitegravir, müssen geboostert werden, um die Pharmakokinetik zu verbessern. Über viele Jahre war der PI Ritonavir bzw. die Norvir®-Kapseln die einzige verlässliche und erprobte Möglichkeit für eine solche „Boosterung“. Im Februar 2009 auf der CROI wurden erstmals neue, so genannte Pharmakoenhancer vorgestellt, die Ritonavir das Booster-Monopol in Zukunft streitig machen könnten. Vorteil dieser Substanzen, die das CYP3A-System inhibieren, könnte der Umstand sein, dass sie selbst keine HIV-Wirkung haben und somit keine PI-Resistenzen drohen. Über Langzeitnebenwirkungen und die Auswirkung einer solch irreversiblen Inhibition von Enzymsystemen ist freilich noch nichts bekannt.

Cobicistat (GS-9350) ist ein PKE der Firma Gilead, der in ersten klinischen PK-Studien ähnliche Booster-Effekte wie Ritonavir hatte (German 2009). In einer randomisierten Phase-II-Studie an 79 ART-naiven Patienten, die neben TDF+FTC noch Atazanavir erhielten, war der Effekt von Cobicistat mit dem von Ritonavir vergleichbar (Cohen 2011). Cobicistat wird auch in einer QUAD-Pille entwickelt, die die vier Gilead-Substanzen Tenofovir, FTC, den Integrasehemmer Elvitegravir und eben Cobicistat enthält. In einer ersten Phase II-Studie wurde die QUAD-Pille bei 71 therapienaiven Patienten doppelblind gegen Atripla® getestet, mit vergleichbarem Effekt nach 24 Wochen (Cohen 2011). Cobicistat scheint gut verträglich, allerdings gab es in der QUAD-Studie leichte Kreatinin-Erhöhungen – möglicherweise Ausdruck einer verringerten tubulären Kreatinin-Sekretion und somit kein Zeichen einer eingeschränkten Nierenfunktion. Allerdings könnten sich klinische Probleme in der Beurteilung der Kreatinin-Werte unter der QUAD-Pille ergeben, die ja auch das potentiell nephrotoxische Tenofovir enthält. Dennoch: Laut der bekanntlich in Sachen Nephrotoxizität erfahrenen Firma laufen weitere Studien.

SPI-452 ist ein PKE der Firma Sequoia, der selbst keine HIV-Wirkung hat (Gulnik 2009). In einer ersten klinischen Studie erhielten 58 gesunde Probanden verschiedene Dosen plus verschiedene PIs. Die Verträglichkeit war gut, die Spiegel von Darunavir (37-fach) und Atazanavir (13-fach) stiegen deutlich. Der Booster-Effekt hielt lange an. Sequioa will nun mit SPI-452 sowohl als Einzelsubstanz als auch in fixen Kombinationen weiter forschen. Auch der Einsatz mit HCV-Proteasehemmern soll geprüft werden. Die Website wirkt indes seltsam leblos, seit Februar 2009 keine Neuigkeiten mehr. Was ist da los?

PF-03716539 ist ein PKE der Firma Pfizer. Studien an gesunden Probanden zum Effekt dieses PKEs auf Midazolam, Maraviroc und Darunavir wurden im Oktober 2009 abgeschlossen, Ergebnisse sind noch nicht publiziert.

TMC-558445 von Tibotec Pharmaceuticals befindet sich derzeit in Phase-I-Studien, Ergebnisse liegen ebenfalls noch nicht vor.

Neue Formulierungen

Einige der derzeit bereits verfügbaren Substanzen werden weiter entwickelt. Wichtigste Ziele: Pillen reduzieren, Einnahme erleichtern. Mit Invirase 500®, Truvada®, Kivexa®, Atripla® und auch den neuen Norvir®-Tabletten sind bereits einige solcher Präparate auf den Markt. Weitere Verbesserungen sind in der Entwicklung.

Viramune® Extended-Release ist eine Verbesserung der herkömmlichen Nevirapin-Formulierung (Battegay 2009). Sie soll die einmal tägliche Gabe von Nevirapin in einer Tablette ermöglichen. Derzeit führt Boehringer dazu mehrere Studien durch. Ende 2010 wurden die ersten Daten der VERxVE-Studie vorgestellt, in der insgesamt 1.011 therapienaive Patienten zusätzlich zu TDF+FTC entweder klassisches oder neu formuliertes Nevirapin erhielten. Nach 48 Wochen waren im Einmal-Arm 81 % unter der Nachweisgrenze, verglichen mit 76 % im herkömmlichen Arm (Gathe 2010). Die Zulassung für Viramune retard® ist inzwischen beantragt, mit ihr wird noch in 2011 gerechnet.

Nelfinavir (Viracept®) 625 mg wurde im April 2003 in den USA zugelassen. Die neue Galenik reduziert die Nelfinavir-Tabletten auf 2 x 2 täglich und verringert gastrointestinale Nebenwirkungen – und das, obwohl die Plasmaspiegel um rund 30 % höher liegen als bei der herkömmlichen Nelfinavir-Galenik (Johnson 2003). In Europa, wo Nelfinavir von Roche statt von Pfizer hergestellt und verkauft wird, wird die 625 mg Tablette bis auf weiteres nicht erhältlich sein.

Zerit® PRC (PRC = „prolonged release capsule“ oder XR = „extended release“) ist eine verkapselte Formulierung von D4T (Baril 2002), die im Oktober 2002 in Europa zugelassen wurde, jedoch nie auf den Markt kam – D4T ist zu „out“. Stattdessen wird versucht, D4T durch Veränderungen der Molekülstruktur zu verbessern. Interessant scheint die Substanz OBP-601 der japanischen Firma Oncolys zu sein, die in vitro weniger toxisch als die Muttersubstanz D4T sein und obendrein ein eigenes Resistenzprofil haben soll (Weber 2008). Angeblich entwickelt sie BMS unter dem Namen Festinavir weiter.

Generika-Kombinationen sind gar nicht so schwer herzustellen, wie die Erfahrungen aus Afrika, Indien oder Thailand zeigen. Meist konnte die Bioequivalenz gezeigt werden (Laurent 2004, Marier 2007). In den Entwicklungsländern werden diese fixen Kombinationen (FDC, fixed drug combination) häufig eingesetzt, darunter vor allem D4T+3TC+Nevirapin, das es zum Beispiel als Triomune (Cipla), GPO-vir (GPO), Triviro LNS (Ranbaxy) oder Nevilast (Genixpharma) gibt. Aber auch AZT+3TC+Nevirapin gibt es inzwischen mehrfach als FDC: Duovir-N (Cipla) oder Zidovex-LN (Ranbaxy) sind nur einige Beispiele. Die Firmen haben sich natürlich meist über die Patentrechte hinweg gesetzt. In den Industrieländern spielen diese Präparate daher keine Rolle.

Literatur zu PKEs und neuen Formulierungen

Baril JG, Pollard RB, Raffi FM, et al. Stavudine extended/prolonged release (XR/PRC) vs. stavudine immediate release in combination with lamivudine and efavirenz: 48 week efficacy and safety. Abstract LbPeB9014, 14th Int AIDS Conf 2002, Barcelona.

Battegay ME, Arasteh K, Plettenb erg A. Assessment of the steady-state PK parameters of two extended release (XR) nevirapine (NVP) tablets 400 mg and 300 mg QD compared with immediate release (IR) NVP tablets 200 mg BID in HIV-1-infected patients – the ERVIR study. Abstract PE 4.1/2, 12th EACS 2009, Cologne.

Cai Y, Klein C, Roggatz U, et al. Bioequivalence of pilot tablet formulations of ritonavir to the marketed soft gel capsule at a dose of 100 mg. Abstract 52LB, 14th CROI 2007, Los Angeles.

Cohen C, Elion R, Ruane P, et al. Randomized, phase 2 evaluation of two single-tablet regimens elvitegravir/cobicistat/emtricitabine/tenofovir disoproxil fumarate versus efavirenz/emtricitabine/tenofovir disoproxil fumarate for the initial treatment of HIV infection. AIDS 2011, 25:F7-12.

Gathe J, Knecht G, Orrell C, et al. 48 week (Wk) efficacy, pharmacokinetics (PK) and safety of once a day (QD) 400 mg nevirapine (NVP) extended release formulation (XR) for treatment of antiretroviral (ARV) naive HIV-1 infected patients (Pts) [VERxVE]. Abstract H-1808, 50th ICAAC 2010, Boston.

German P, Warren D, West S, Hui J, Kearney BP. Pharmacokinetics and bioavailability of an integrase and novel pharmacoenhancer-containing single-tablet fixed-dose combination regimen for the treatment of HIV. J AIDS 2010, 55:323-9.

Gulnik S, Eissenstat M, Afonina E, et al. Preclinical and early clinical evaluation of SPI-452, a new pharmacokinetic enhancer. Abstract 41, 16th CROI 2009, Montréal.

Johnson M, Nieto-Cisneros L, Horban A, et al. Viracept (Nelfinavir) 625 mg film-coated tablets: investigation of safety and gastrointestinal tolerability of this new formulation in comparison with 250 mg film-coated tablets (Viracept) in HIV patients. Abstract 548, 2nd IAS 2003, Paris.

Klein CE, Chiu YL, Causemaker SK, et al. Lopinavir/ritonavir (LPV/r) 100/25 mg tablet developed for pediatric use: bioequivalence to the LPV/r 200/50 mg tablet at a dose of 400/100 mg and predicted dosing regimens in children Abstract P4.1/01, 11th EACS 2007, Madrid.

Laurent C, Kouanfack C, Koulla-Shiro S, et al. Effectiveness and safety of a generic fixed-dose combination of nevirapine, stavudine, and lamivudine in HIV-1-infected adults in Cameroon: open-label multicentre trial. Lancet 2004, 364:29-34.

Marier JF, Dimarco M, Guilbaud R, et al. Pharmacokinetics of lamivudine, zidovudine, and nevirapine administered as a fixed-dose combination formulation versus coadministration of the individual products. J Clin Pharmacol 2007;47:1381-9.

Ramanathan S, Warren D, Wei L, Kearney B. Pharmacokinetic boosting of atazanavir with the pharmacoenhancer GS-9350 versus ritonavir.  Abstract A1-1301/34, 49th ICAAC 2009, San Francisco.

Weber J, Weberova J, Vazquez A, et al. Drug susceptibility profile of OBP-601, a novel NRTI, using a comprehensive panel of NRTI- or NNRTI-resistant viruses. Abstract 726b, 15th CROI 2008, Boston

Neue Nukleosidanaloga (NRTIs)

Nach dem Ende von Dexelvucitabine 2006 gibt es kaum noch NRTIs mit realistischen Chancen – es scheint schwierig zu sein, NRTIs zu finden, die bei fehlender mitochondrialer Toxizität eine gute Wirkung gegen resistente Viren haben. Es scheint unwahrscheinlich, dass es jemals eine der hier aufgezählten Substanzen auf den Markt schaffen wird. Viele sind bereits in der Versenkung verschwunden.

Amdoxovir (DAPD) ist ein Guanosin-Analogon, das in vivo zu dem hochwirksamen DXG umgewandelt wird und eine gute Wirksamkeit gegen AZT/3TC-resistente Viren und gegen HBV hat (Corbett 2001). Nach Veränderungen an den Augenlinsen bei Patienten unter DAPD (Thompson 2003) zog Gilead Anfang 2004 den Lizenzvertrag mit zwei US-Universitäten zurück. So ganz ist DAPD möglicherweise aber noch nicht aus dem Rennen – an den Unis forscht man, von der US-Firma RFS Pharma aus Georgia unterstützt, weiter: dort wird DAPD mit AZT kombiniert, um die distinkten Resistenzprofile zu nutzen. In einer ersten doppelblind randomisierten Studie an 24 Patienten sank die Viruslast unter 500 mg DAPD + 200 mg AZT BID um beeindruckende 1,97 Logstufen nach 10 Tagen. Offenbar bestehen synergistische Effekte (Murphy 2010), die nicht durch Interaktionen erklärbar sind (Hurwitz 2010). Die entscheidende Frage wird sein, ob man die Toxizitätsprobleme von DAPD in den Griff bekommt. Phase II-Studien laufen.

Apricitabine (ATC, AVX-754, früher SPD-754) ist ein heterozyklisches Cytidin-Analogon, das 2005 von Shire Biochem an die australische Firma Avexa verkauft wurde. In vitro behält ATC, das chemisch 3TC ähnelt,  seine Wirksamkeit gegenüber einem breiten Spektrum von TAMs. Bis zu 5 NRTI-Mutationen können die Effektivität nicht wesentlich beeinträchtigen (Gu 2006), allerdings sinkt die Empfindlichkeit bei Viren mit der K65R Mutation (Frankel 2007). In einer plazebokontrollierten Studie sank die Viruslast unter zehntägiger Monotherapie um 1,2-1,4 Logstufen – für ein NRTI eine gute Wirkung (Cahn 2006). Bei 50 Patienten mit der M184V Mutation waren es nach drei Wochen unter 600-800 mg ATC noch 0,7-0,9 Logstufen (Cahn 2010). Resistenzen wurden nach 48 Wochen nicht gesehen und auch in vitro nicht selektioniert (Oliveira 2009). ATC wurde gut vertragen, am häufigsten scheinen Cephalgien und Rhinitis zu sein (Gaffney 2009). Was ist mit Langzeittoxizitäten? In Affen zeigten sich nach 52 Wochen geringe Hautprobleme, meist eine Hyperpigmentation. ATC war damit wesentlich geringer toxisch als sein Razemat BCH-10652, unter dem Affen an einer schweren, degenerativen Dermatopathie erkrankten (Locas 2004). Durch 3TC und FTC sinken die intrazellulären Spiegel von ATC, die Kombination mit anderen Cytidin-Analoga ist daher problematisch. Im Mai 2010 scheiterten Verhandlungen mit großen Pharmafirmen, so dass die Weiterentwicklung vorerst gestoppt wurde – eine Zukunft ist fraglich.

Dioxolanthymin (DOT) ist ein neues Thymidin-Analogon  – in dieser Untergruppe eine der wenigen Newcomer. Präklinisch sah DOT, das chemisch DAPD ähnelt, relativ gut aus (Chung 2005, Liang 2006). Derzeit forscht man an Prodrugs, klinische Studien lassen auf sich warten (Liang 2009).

EFdA oder 4′-ethynyl-2-fluoro-deoxyadenosine scheint Tierversuchen an Affen zufolge scheint es einer der effektivsten NRTIs aller Zeiten zu sein. Die SIV-Viruslast sank nach 7 Tagen um 2-3 Logstufen (Parniak 2009). Offenbar wird die Substanz als potentielles Mikrobizid evaluiert.

Elvucitabine (oder ACH-126,443) ist ein Cytidinanalogon von Achillion Pharmaceuticals. Es ist ein Enantiomer von Dexelvucitabine (Reverset) und gegen HIV und HBV wirksam. In vitro bleibt es bei zahlreichen NRTI-Resistenzen effektiv (Fabrycki 2003). Interessant ist die lange Halbwertszeit von 150 Stunden (Colucci 2005). Bei HIV-Patienten mit der M184V-Mutation zeigte sich in einer kleinen, doppelblinden Studie ein Abfall der Viruslast um 0,7-0,8 Logstufen nach 28 Tagen. Die Studie wurde allerdings abgebrochen, da unter 100 mg Elvucitabine bei 6/56 Patienten Leukopenien und wohl auch Hautausschläge auftraten (Dunkle 2003). Pankreatitiden wie unter Dexelvucitabine wurden dagegen nicht beobachtet. In vitro ist die mitochondriale Toxizität geringer als unter Dexelvucitabine, allerdings wohl auch die Bindungsaffinität zur Reversen Transkriptase resistenter Viren (Murakami 2004). Geht also die bessere Verträglichkeit auf Kosten der Wirkung? In einer kleinen Phase II-Studie an 77 therapienaiven Patienten (mit Efavirenz und Tenofovir) war Elvucitabine über 96 Wochen in etwa vergleichbar mit 3TC (DeJesus 2010). Probleme scheint es hinsichtlich Interaktionen mit Ritonavir zu geben, eine Inhibierung von Drug-Transporter-Systemen scheint wahrscheinlich (Colucci 2009).

Fosalvudine ist ein NRTI der Firma Heidelberg Pharma, der aus einer an ein Trägermolekül gekoppelten Zwischenstufe (= „Enhanced Pro-Drug-Prinzip“) des Fluorothymidins Alovudine besteht. Erst nach enzymatischer Spaltung im Gewebe wird der aktive Teil freigesetzt. Man hofft, dass die bei Fluorothymidinen üblichen Toxizitäten so reduziert werden. In einer Phase II-Studie an 43 therapienaiven HIV-Patienten wurde Fosalvudine gut vertragen, nach zwei Wochen Monotherapie mit 5-40 mg sank die Viruslast um bis zu 1,0 Logstufen (Cahn 2007). Studien zu vorbehandelten Patienten sind wohl in Russland und Argentinien im Gange. Untersuchungen an Ratten weisen allerdings auf eine beachtliche mitochondriale Toxizität hin (Venhoff 2009). Weiterentwicklung fraglich.

Fozivudine ist ein ebenfalls nach dem „Enhanced Pro-Drug-Prinzip“ von Heidelberg Pharma entwickeltes AZT. In Phase-I/II-Studien (Bogner 1997, Girard 2000) war Fozivudine gut verträglich, allerdings nur moderat wirksam – nach 4 Wochen wurde ein Viruslastabfall in der höchsten Dosis von knapp 0,7 Logstufen erreicht (Girard 2000). Der Firmenwebseite zufolge ist man seit 2005 auf Partnersuche, um neue Studien angehen zu können. Seither herrscht Funkstille – so recht scheint sich bislang niemand für ein neues AZT begeistern zu können.

GS-7340 ist eine Weiterentwicklung von Tenofovir, durch die sich wohl höhere Tenofovir-Konzentration in peripheren Blutzellen erreichen lassen. GS-7340 wurde in verschiedenen Dosen bei 30 HIV-Patienten gegen Tenofovir getestet. Nach 2 Wochen war die Viruslast um bis zu 1,71 Logstufen versus 0,94 abgesunken. Mit einer besseren Wirksamkeit bei insgesamt niedrigerer systemischer Tenofovir-Exposition scheint hier ein viel versprechendes Tenofovir-Backup zu entstehen (Markowitz 2011). Angesichts des Erfolgs von Tenofovir dürfte die Firma allerdings keine Eile haben, zu schnell eine Konkurrenz aufzubauen.

Phosphazid (Nicavir) ist ein in Russland entwickelter (und seit 1999 dort zugelassener) NRTI, der AZT sehr ähnelt (Skoblov 2003). Nach 12 Wochen Monotherapie mit 400 mg sank die Viruslast um 0,7 Logstufen. Da Phosphazid eine Prodrug von AZT ist, ist ein zusätzlicher Aktivierungsschritt nötig. Die D67N-Mutation scheint die Wirksamkeit zu reduzieren (Machado 1999). Weitere Studien zeigten die Wirksamkeit in Kombination mit DDI und Nevirapin (Kravtchenko 2000) bzw. Saquinavir (Sitdykova 2003). Es fällt allerdings schwer, einen Vorteil gegenüber AZT zu entdecken – eine vermutete bessere Verträglichkeit ist bislang nicht erwiesen.

Racivir ist ein Cytidin-Analogon der Firma Pharmasset und eine Mischung aus FTC und seinem Enantiomer. Für beide Enantiomere gibt es evtl. unterschiedliche Resistenzpfade, wodurch theoretisch die Resistenzbildung erschwert sein könnte (Hurwitz 2005). Kombiniert mit D4T und Efavirenz zeigte sich ein guter Effekt nach zwei Wochen (Herzmann 2005). In einer doppelblind randomisierten Studie an 42 Patienten mit der M184V-Mutation sank die Viruslast nach 28 Tagen um 0,4 Logstufen (Cahn 2007). In den letzten Jahren war nichts Neues zu hören. Große Firmen, die Racivir weiter entwickeln könnten, haben offenbar kein Interesse.

Stampidin ist ein Nukleosidanalogon, das von der amerikanischen Firma Parker Hughes Institute entwickelt wurde. Es ähnelt D4T und soll in vitro angeblich rund 100-fach effektiver sein als AZT (Uckun 2002). Zusätzlich besteht eine Wirksamkeit gegen HIV-Mutanten mit bis zu 5 TAMs (Uckun 2006). Auch als potentielles Mikrobizid käme es möglicherweise in Frage (D’Cruz 2004). Studien an HIV-Patienten sind schon länger angekündigt, Daten stehen noch aus.

Aus den Augen, aus dem Sinn – folgende NRTIs werden nicht weiter entwickelt:

  • Adefovir dipivoxil von Gilead, kaum Wirkung gegen HIV, Nephrotoxizität
  • Dexelvucitabine (Reverset) von Incyte, 2006, Pankreatitiden, inzwischen überlegt die Firma Pharmasset, ob es vielleicht doch weitergehen soll
  • dOTC von Biochem Pharma, Toxizität in Affen
  • FddA (Lodenosin®) von Bioscience, 1999, Leber/Nierenschäden
  • KP-1461 von Koronis Pharmaceuticals, Juni 2008, wegen Wirkungslosigkeit
  • Lobucavir von BMS, Kanzerogenität
  • MIV-210 von Medivir/Tibotec, Einstellung im Oktober 2007, wird jetzt als HBV-Medikament getestet
  • MIV-310 (Alovudin, FLT) von Boehringer, März 2005, enttäuschende Phase-II-Studie
  • SPD-756 (BCH-13520) und SPD-761

Neue NNRTIs

Mit Etravirin hat es 2008 nach rund 10 Jahren endlich wieder ein NNRTI auf den Markt geschafft. Beflügelt durch diesen Erfolg, scheint sich die Pharmaindustrie wieder mehr mit NNRTIs zu beschäftigen.

Rilpivirin (TMC 278) ist aktuell der am weitesten entwickelte NNRTI. Die Substanz ist wie Etravirin ein DAPY-NNRTI (Janssen 2005). Rilpivirin wirkt gegen die meisten NNRTI-resistenten Viren. Eine Phase IIa-Studie an therapienaiven Patienten ergab einen mittleren Abfall der Viruslast nach 7 Tagen Monotherapie von 1,2 Logstufen – allerdings zeigte sich zwischen 25 und 150 mg keine dosisabhängige Wirkung (Goebel 2005). Wesentlicher Vorteil von Rilpivirin ist die lange Halbwertszeit von 40 Stunden. Kombiniert mit Lopinavir, steigen die Spiegel deutlich (Hoetelmans 2005), es werden Dosisanpassungen notwendig werden. Bei einem Wechsel von Efavirenz auf Rilpivirin zeigten sich allerdings anfangs niedrige Spiegel, deren Relevanz noch unklar ist (Crauwels 2011).

In einer offen randomisierten Phase IIb–Studie war die Wirkung mit der von Efavirenz nach 96 Wochen vergleichbar, bei allerdings deutlich weniger ZNS-Nebenwirkungen und Lipiderhöhungen (Pozniak 2010). Die 25 mg-Dosis wird derzeit in zwei doppelblind-randomisierten Phase III-Studien (ECHO und THRIVE) gegen Efavirenz bei 1.368 therapienaiven Patienten getestet. Nach 48 Wochen zeigte sich eine vergleichbare Wirksamkeit bei insgesamt sogar besserer Verträglichkeit (Cohen 2010). Resistenzen bzw. virologisches Versagen wurde allerdings unter Rilpivirin häufiger beobachtet (9,0 versus 4,8 %).

Die anfänglich beobachtete QT-Verlängerung unter Rilpivirin scheint nicht relevant zu sein (Vanveggel 2009), auch das Risiko einer Teratogenität ist gering (DEsmidt 2009). Interessant ist auch eine parenterale Nanosuspension, bei der mittels monatlicher Injektionen Rilpivirin-Spiegel erreicht werden, die denen der täglichen Gabe von 25 mg entsprechen (Verloes 2008). Rilpivirin wird derzeit auch im Rahmen von Kombinationspräparaten (zusammen mit TDF+FTC) gegen Efavirenz getestet.

GSK-2248761 (GSK 761, früher IDX-899) ist ein neuer NNRTI von ViiV. Das Resistenzprofil hat in vitro keine Überlappung mit Efavirenz (Richman 2008). In vivo sank die Viruslast nach 8 Tagen um 1,8 Logstufen (Zala 2008). Die Halbwertzeit ist lang (Zhou 2009). Anfang 2011 stoppte die FDA zumindest vorläufig die laufenden klinischen Studien, nach dem zerebrale Krampfanfälle beobachtet worden waren. Trotz der Beteuerungen von ViiV, dass dies noch nicht das Ende wäre: Weiterentwicklung mehr als fraglich.

Lersivirin (UK 453,061) ist auch ein neuer NNRTI von ViiV Healthcare mit guter Wirkung gegen klassische NNRTI-Resistenzen (Corbeau 2010). Gesunde Probanden vertrugen die Substanz über 28 Tage gut (Davis 2010). Bei HIV-Patienten wurde unter 10-750 mg nach 7 Tagen Monotherapie ein Viruslastabfall von bis zu 2,0 Logstufen beobachtet (Fätkenheuer 2009).

RDEA806 ist ein NNRTI von Ardea Bioscience. Die Resistenzbarriere soll hoch, das Interaktionspotential gering sein (Hamatake 2007). Monotherapie-Studien an HIV-Patienten zeigten einen Abfall über 1,8 Logstufen nach 7 Tagen, bei guter Verträglichkeit (Moyle 2010). Die Daten scheinen immerhin so vielversprechend genug, dass es Phase IIb-Studien geben soll. Allerdings: Die Website der Firma ist verdächtig leer zu dem Thema…

Das große NNRTI-Sterben – NNRTIs, deren Entwicklung eingestellt wurde:

  • Atevirdine – Upjohn konzentrierte sich auf Delavirdin (ob das klug war?)
  • BIRL355 BS – von Boehringer, in 2007 Probleme mit Metaboliten
  • Calanolide A von Sarawak, wohl zu schwach wirksam
  • Capravirin (AG1549) von Pfizer, zu schwach
  • DPC 083 (BMS-561390), Mai 2003, schlechte PK/Sicherheitsdaten
  • DPC 961 – Selbstmordgedanken der Probanden, DPC 963
  • Emivirin (MKC-442, Coactinon) – von Triangle, zu schwach (Me-too)
  • GW420867X,  GSK, klassisches Me-too-Präparat
  • GW8248 und GW5624, GSK, u.a. zu schlechte Bioverfügbarkeit
  • HBY-097,  Hoechst-Bayer, ungünstige Nebenwirkungen
  • Loviride,  Janssen Pharmaceuticals, zu schwach in der CAESAR-Studie
  • MIV-150, Medivir/Chiron, schlecht bioverfügbar, w. als Mikrobizid entwickelt
  • PNU 142721, Pharmacia & Upjohn, Efavirenz zu ähnlich (Me-too)
  • TMC 120 (Dapivirin), Tibotec, schlecht oral verfügbar

Literatur zu neuen NNRTIs

Cohen C, Molina JM, Cahn P et al. Pooled week 48 efficacy and safety results from ECHO and THRIVE, two double-blind, randomised phase III trials comparing TMC278 versus efavirenz in treatment-naïve HIV-1-infected patients. Abstract THLBB206, 18th IAC 2010, Vienna.

Corbau R, Mori J, Phillips C, et al. Lersivirine, a nonnucleoside reverse transcriptase inhibitor with activity against drug-resistant human immunodeficiency virus type 1. Antimicrob Agents Chemother 2010, 54:4451-63.

Crauwels H, Vingerhoets J, Ryan R. Pharmacokinetic parameters of once-daily TMC278 following administration of EFV in healthy volunteers. Abstract 630, 18th CROI 2011, Boston.

Davis J, Hackman F, Ndongo MN, et al. Safety and tolerability of lersivirine, a nonnucleoside reverse transcriptase inhibitor, during a 28-day, randomized, placebo-controlled, Phase I clinical study in healthy male volunteers. Clin Ther 2010, 32:1889-95.

Desmidt M, Willems B, Dom P, et al. Absence of a teratogenic potential from a novel next-generation NNRTI, TMC278. Abstract PE7.1/4, 12th EACS 2009, Cologne.

Fätkenheuer G, Staszewski S, Plettenberg A, et al. Activity, pharmacokinetics and safety of lersivirine (UK-453,061), a next-generation nonnucleoside reverse transcriptase inhibitor, during 7-day monotherapy in HIV-1-infected patients. AIDS 2009, 23:2115-22..

Goebel F, Yakovlev A, Pozniak A, et al. TMC278: Potent anti-HIV activity in ART-naive patients. Abstract 160, 12th CROI 2005, Boston.

Hamatake R, Zhang Z, Xu W, et al. RDEA806, a potent NNRTI with a high genetic barrier to resistance. Abstract 1662, 47th ICAAC 2007, Chicago.

Hoetelmans R, van Heeswijk R, Kestens D, et al. Pharmacokinetic interaction between TMC278, an investigational non-nucleoside reverse transcriptase inhibitor (NNRTI), and lopinavir/ritonavir (LPV/r) in healthy volunteers. Abstract PE4.3/1, 10th EACS 2005, Dublin.

Janssen PA, Lewi PJ, Arnold E, et al. In search of a novel anti-HIV drug: multidisciplinary coordination in the discovery of 4-[[4-[[4-[(1E)-2-cyanoethenyl]-2,6-dimethylphenyl]amino]-2- pyrimidinyl]amino]benzonitrile (R278474, rilpivirine). J Med Chem 2005, 48:1901-9.

Moyle G, Boffito M, Stoehr A, et al. Phase 2a randomized controlled trial of short-term activity, safety, and pharmacokinetics of a novel nonnucleoside reverse transcriptase inhibitor, RDEA806, in HIV-1-positive, antiretroviral-naive subjects. Antimicrob Agents Chemother 2010, 54:3170-8.

Pozniak AL, Morales-Ramirez J, Katabira E, et al. Efficacy and safety of TMC278 in antiretroviral-naive HIV-1 patients: week 96 results of a phase IIb randomized trial. AIDS 2010, 24:55-65.

Richman D, Jakubik J, Chapron C, et al. Genotypic resistance and phenotypic cross-resistance profile in vitro for a novel NNRTI: IDX899. Abstract 729, 15th CROI 2008, Boston.

Vanveggel S, Buelens A, Crauwels H, et al. TMC278 25mg QD has no effect on corrected QT interval in a study in HIV-negative volunteers. Abstract PE7.1/2, 12th EACS 2009, Cologne.

Verloes R, van’t Klooster G, Baert L, et al. TMC278 long acting – a parenteral nanosuspension formulation that provides sustained clinically relevant plasma concentrations in HIV-negative volunteers. Abstract TUPE0042, 17th IAC 2008, Mexico City.

Zala C, Murphy R, Zhou XJ, et al. IDX899, a novel HIV-1 NNRTI with high barrier to resistance, provides suppression of HIV viral load in treatment-naive HIV-1-infected subjects. Abstract THAB0402, XVII IAC 2008, Mexico City.

Zhou XJ, Pietropaolo K, Damphousse D, et al. Single-dose escalation and multiple-dose safety, tolerability, and pharmacokinetics of IDX899, a candidate human immunodeficiency virus type 1 nonnucleoside reverse transcriptase inhibitor, in healthy subjects. Antimicrob Agents Chemother 2009, 53:1739-46.

Neue Proteasehemmer

Auch bei den PIs blieben zuletzt viele auf der Strecke. Nach der Zulassung von Darunavir ist wohl mittelfristig nicht viel zu erwarten: die Anforderungen sind angesichts der großen Konkurrenz immens geworden (Review: Pokorná 2009).

DG17 ist die Prodrug von DG35 und bereits seit längerem in klinischer Testung. Nachdem lange nichts zu hören war, scheint eine neuere Studie, die einen deutlichen Booster-Effekt durch Ritonavir und damit eine deutliche PK-Verbesserung zeigte, die Weiterentwicklung zu beleben (Cherry 2008).

PL-100 (MK8122) ist ein PI der kanadischen Firma Ambrilia Biopharma, die inzwischen mit Merck kooperiert. Die Prodrug PPL-100 wird zur aktiven Substanz PL-100 metabolisiert, welche bei einer hohen genetischen Barriere gegen PI-multiresistente Viren wirken soll (Dandache 2007). Die an gesunden Probanden gewonnenen PK-Daten sehen gut aus, auch die lange Halbwertszeit von 30-37 Stunden macht die Substanz interessant. 2008 wurde die klinische Weiterentwicklung unterbrochen, man will sich bei Merck Prodrugs widmen.

SM-309515 von Sumitomo Pharmaceuticals soll sich in Phase I-Studien befinden. Vorläufersubstanzen war die kurze Halbwertszeit zum Verhängnis geworden (Mimoto 2008). Die Wirksamkeit blieb gegen Mutationen wie S37N, I47V, R57K und I84V erhalten. Am Menschen wird angeblich eine Ritonavir-Boosterung getestet.

SPI-256 von Sequioa Pharmaceuticals bleibt in vitro gegen PI-resistente Virusisolate wirksam (Gulnik 2006). Gesunde Probanden vertrugen es wohl gut.

TMC-310911 ist ein neuer PI von Tibotec. Er wird derzeit zusammen mit dem Booster-Medikament TMC-558445 in Phase I-Studien untersucht. Daten liegen noch nicht vor.

Aus den Augen aus dem Sinn – PIs, deren Entwicklung eingestellt wurde:

  • AG-001859 – von Pfizer
  • Brecanavir – von GSK Ende 2006 wegen schlechter PK-Daten gestoppt
  • DPC 684/DPC 681 – geringe therapeutische Breite
  • GS 9005 (früher GS 4338) – von Gilead
  • JE-2147 (AG1776, KNI-764) – von Pfizer, seit 1999 nichts Neues
  • KNI-272 (Kynostatin) – ungünstige PK-Daten
  • Mozenavir (DMP-450) – von Gilead, Me too (keine Vorteile erkennbar)
  • RO033-4649 – von Roche, Saquinavir wohl zu ähnlich
  • SC-52151 und SC-55389A – schlechte Bioverfügbarkeit
  • TMC-126 – Tibotec konzentrierte sich seinerzeit auf Darunavir

Literatur zu neuen PIs

Cherry CL, Hoy JF, Rowe JS, Krum H, Mills J, Lewin SR. Phase 1 single dose studies to optimize the pharmacokinetics of DG17, a novel HIV-protease inhibitor pro-drug, using sodium bicarbonate and ritonavir. Curr HIV Res 2008, 6:272-5.

Dandache S, Sevigny G, Yelle J, et al. In vitro antiviral activity and cross-resistance profile of PL-100, a novel protease inhibitor of human immunodeficiency virus type 1. Antimicrob Agents Chemother 2007;51:4036-43.

Gulnik S, Afonina E, Eissenstat M, Parkin N, Japour A, Erickson J. SPI-256, a highly potent HIV protease inhibitor with broad activity against MDR strains. Abstract 501, 13th CROI 2006, Denver.

Hammond J, Jackson L, Graham J, et al. Antiviral activity and resistance profile of AG-001859, a novel HIV-1 protease inhibitor with potent activity against protease inhibitor-resistant strains of HIV. Antiviral Therapy 2004; 9:S17

Mimoto T, Nojima S, Terashima K. Structure-activity relationships of novel HIV-1 protease inhibitors containing the 3-amino-2-chlorobenzoyl-allophenylnorstatine structure. Bioorg Med Chem 2008, 16:1299-308.

Pokorná J, Machala L, Řezáčová P Konvalinka J. Current and Novel Inhibitors of HIV Protease. Viruses 2009, 1:1209-1239. http://www.mdpi.com/1999-4915/1/3/1209/htm

Wu JJ, Stranix B, Milot G, et al. PL-100, a next generation protease inhibitor against drug-resistant HIV: in vitro and in vivo metabolism. Abstract H-253, 46th ICAAC 2006, San Francisco.

Neue Entry-Inhibitoren

Bei dem Eintritt von HIV in die CD4-Zelle gibt es drei Schlüssel-Stellen:

  1. Die Bindung von HIV über das Hüllprotein gp120 an den CD4-Rezeptor („Attachment“ – Ansatzpunkt der Attachment-Inhibitoren)
  2. Die Bindung an Korezeptoren (Angriff der Korezeptor-Antagonisten) durch Konformationsänderungen und schließlich
  3. Die Fusion von Virus und Zelle (Angriff der Fusionsinhibitoren)

Attachment-Inhibitoren, Korezeptorantagonisten und Fusionsinhibitoren werden zum jetzigen Zeitpunkt, obwohl sehr heterogen, als Entry-Inhibitoren zusammengefasst. Mit Maraviroc und T-20 sind aktuell zwei Entry-Inhibitoren zugelassen (siehe dazu das vorherige Kapitel). Klar scheint schon jetzt, dass sich mit dieser Gruppe faszinierende neue Möglichkeiten eröffnen werden. Andererseits ist derzeit noch vieles kaum mehr als Grundlagenforschung – viele der im Folgenden besprochenen Substanzen werden in der Versenkung verschwinden, manche sind es bereits.

Neue Attachment-Inhibitoren

Das Andocken des HIV-Glykoproteins gp120 an den CD4-Rezeptor ist der erste Schritt beim Eintritt von HIV in die Zelle. Theoretisch lässt sich das Andocken (Attachment) bzw. die Interaktion von gp120 und CD4 durch verschiedene Mechanismen hemmen – so kann sowohl der CD4-Rezeptor als auch die Bindungsstelle von gp120 blockiert werden. Beides wird derzeit untersucht, und folglich sind die Attachment-Inhibitoren sehr heterogen, sodass man vermutlich gar nicht von einer einzelnen Substanzklasse sprechen kann.

Bereits Anfang der 90er Jahre wurde mit löslichen CD4-Molekülen experimentiert, die das Andocken von HIV an die CD4-Zellen verhindern (Daar 1990, Schooley 1990). Was im Labor zunächst gut ausgesehen hatte, funktionierte im Menschen leider nicht, wahrscheinlich aufgrund der sehr kurzen Halbwertszeit von löslichem CD4 (wenige Minuten). Mit dem wachsenden Wissen um den Mechanismus des Eintritts von HIV in die Zelle, aber auch durch den Erfolg von T-20 als erstem Entry-Inhibitor, hat sich die Entwicklung der Attachment-Inhibitoren in den letzten Jahren neu belebt. Die meisten Präparate sind allerdings noch nicht besonders weit in ihrer Entwicklung und oft noch mit einer problematischen Pharmakokinetik belastet – meist geht es derzeit noch um „Proof of Principle“.

BMS-663068 ist ein Attachment-Inhibtor der Firma BMS. Als sogenanntes „small molecule“ bindet es spezifisch und reversibel an gp120 von HIV und verhindert über eine Konformationsänderung von gp120 das Andocken an die CD4-Zelle. Es bindet also nicht wie Ibalizumab (s. unten) an den CD4-Rezeptor. Die Substanz sorgte unlängst auf der CROI für Aufsehen (Nettles 2011). Die Viruslast sank zwischen 1,2 und 1,8 Logstufen, das Maximum der Absenkung wurde jeweils einige Tage nach Ende der Behandlung erreicht. Leider zeigten sich keine Dosisabhängigkeit und große interindividuelle Schwankungen. Relativ häufig waren Kopfschmerzen (44 %) und Rash (16 %, meist mild). Aber dennoch: Hoffnungsvolle Wiederbelebung einer neuen Wirkstoffgruppe. BMS-663068 ist die Prodrug von BMS-626529, das eine breite Wirksamkeit gegen verschiedene HIV-Isolate besitzt (Nowicka-Sans 2011). Es ist ein Nachfolger von BMS-488043, dass nach ersten klinischen Daten (Hanna 2004) in 2004 gestoppt wurde. Problem dieser Art von Medikamenten könnte die rasche Resistenzentwicklung sein – die Bindungsstelle von gp120 ist schließlich eine der variabelsten Stellen überhaupt (Madani 2010).

 

Ibalizumab (früher TNX-355 bzw. Hu5A8) ist ein monoklonaler Antikörper, der direkt an den CD4-Rezeptor bindet und so den Eintritt von HIV verhindert. Ganz ist der Wirkmechanismus allerdings noch nicht geklärt. Im Gegensatz zu anderen Attachment-Inhibitoren scheint Ibalizumab nicht die Bindung von gp120 an CD4 zu verhindern, sondern eher die konformationelle Änderung und damit die Bindung von gp120 an CCR5 und CXCR4. Ibalizumab kann nur intravenös verabreicht werden. Nach ersten Studien (Jacobsen 2004+2009, Kuritzkes 2004) gibt es mittlerweile 48-Wochen-Daten einer plazebokontrollierten Phase-II-Studie (Norris 2006). In dieser erhielten intensiv vorbehandelte Patienten zusätzlich zu einer optimierten ART alle zwei Wochen eine Infusion mit zwei unterschiedlichen Dosen Ibalizumab (10 bzw. 15 mg/kg) oder Plazebo. Nach 48 Wochen war ein lang anhaltender Viruslastabfall von etwa einer Logstufe in beiden Verum-Armen zu beobachten.

Es scheint eine inverse Korrelation zwischen der Sensitivität für Ibalizumab und löslichem CD4 zu geben – möglicherweise sind Ibalizumab-resistente Viren für lösliches CD4 überempfindlich, das alleine nicht wirkt (siehe oben, Duensing 2006). Resistenzen sorgten für eine erhöhte Sensitivität gegenüber löslichem CD4 und dem gp120-Antikörper VC01, weshalb unlängst die Idee aufgeworfen wurde, Ibalizumab in einem Cocktail aus CD4 und VC01 zu geben (Pace 2011). Erste Daten zu Resistenzen wurden kürzlich publiziert (Toma 2011).

Eine Frage ist, ob die Funktionalität der CD4-Zellen nicht beeinträchtigt wird. Bislang wurden keine negativen Auswirkungen auf die CD4-Zellen festgestellt, und angeblich ist die Bindungsstelle von Ibalizumab an CD4 auch anders lokalisiert als die Bindungsstellen der natürlichen CD4-Liganden, den HLA-Klasse-II-Molekülen. Die CD4-Zellen sollten ihre normalen Funktionen also wahrnehmen können, auch wenn Ibalizumab die HIV-Bindungsstelle besetzt: hoffen wir, dass dem so ist.

Ursprünglich von der Firma Tanox Biosystem (Houston, Texas) entwickelt, war nach der Tanox-Übernahme durch die amerikanische Biotechnologie-Firma Genentech zunächst unklar, wie es mit Ibalizumab weiter gehen sollte. Genentech verkaufte Mitte 2007 die Rechte an TaiMed Biologics, eine taiwanesische Firma – diese plant derzeit Phase IIb-Studien in Europa und den USA. Dass es mit der Substanz weiter gehen könnte, mag man an dem Umstand erkennen, dass sich David Ho, Direktor des Aaron Diamond Instituts und übrigens taiwanesischer Abstammung, persönlich der Sache angenommen hat.

Literatur zu Attachment-Inhibitoren

Daar ES, Li XL, Moudgil T, Ho DD. High concentrations of recombinant soluble CD4 are required to neutralize primary human immunodeficiency virus type 1 isolates. Proc Natl Acad Sci U S A 1990, 87:6574-6578.

Duensing T, Fung M, Lewis S, Weinheimer S. In vitro characterization of HIV isolated from patients treated with the entry inhibitor TNX-355. Abstract 158 LB,  13th CROI 2006, Denver.

Hanna G, Lalezari L, Hellinger J, et al. Antiviral activity, safety, and tolerability of a novel, oral small-molecule HIV-1 attachment inhibitor, BMS-488043, in HIV-1-infected subjects a novel, oral small-molecule HIV-1 attachment inhibitor, BMS-488043, in HIV-1-infected subjects. Abstract 141, 11th CROI, 2004, San Francisco.

Jacobson JM, Kuritzkes DR, Godofsky E, et al. Phase 1b study of the anti-CD4 monoclonal antibody TNX-355 in HIV-infected subjects: safety and antiretroviral activity of multiple doses. Abstract 536, 11th CROI 2004, San Francisco.

Jacobson JM, Kuritzkes DR, Godofsky E, et al. Safety, pharmacokinetics, and antiretroviral activity of multiple doses of ibalizumab (formerly TNX-355), an anti-CD4 monoclonal antibody, in human immunodeficiency virus type 1-infected adults. Antimicrob Agents Chemother 2009, 53:450-7.

Kuritzkes DR, Jacobson J, Powderly WG, et al. Antiretroviral activity of the anti-CD4 monoclonal antibody TNX-355 in patients infected with HIV type 1. J Infect Dis 2004, 189:286-91.

Madani N, Princiotto A, Schön A, et al. Binding requirements for the entry inhibitor BMS-806. Abstract 65, 17th CROI 2010, San Francisco.

Nettles R, Schürmann D, Zhu L, et al. Pharmacodynamics, safety, and pharmacokinetics of BMS-663068: A potentially first-in-class oral HIV attachment inhibitor. Abstract 49, 18th CROI 2011, Boston.

Norris D, Morales J, Godofsky E, et al. TNX-355, in combination with optimized background regimen, achieves statistically significant viral load reduction and CD4 cell count increase when compared with OBR alone in phase 2 study at 48 weeks. Abstr. ThLB0218, XVI IAC 2006, Toronto

Nowicka-Sans B, Gong YF, Ho HT, et al. Antiviral Activity of a New Small Molecule HIV-1 Attachment Inhibitor, BMS-626529, the Parent of BMS-663068. Abstract 518, 18th CROI 2011, Boston.

Pace G, Fordyce M, Franco D. Anti-CD4 monoclonal antibody ibalizumab exhibits exceptional breadth and potency against HIV, which adopts a unique pathway to resistance. Abstract 585, 18th CROI 2011, Boston.

Schooley RT, Merigan TC, Gaut P, et al. Recombinant soluble CD4 therapy in patients with the acquired immunodeficiency syndrome (AIDS) and AIDS-related complex. Ann Intern Med. 1990, 112:247-253.

Toma J, Weinheimer SP, Stawiski E, et al. Loss of asparagine-linked glycosylation sites in variable region 5 of human immunodeficiency virus type 1 envelope is associated with resistance to CD4 antibody ibalizumab. J Virol 2011, 85:3872-80.

Neue Korezeptorantagonisten

HIV braucht neben dem CD4-Rezeptor für den Eintritt in die Zielzelle so genannte Korezeptoren wie CCR5 und CXCR4, siehe dazu auch das vorhergehende Kapitel. Beide Korezeptoren lassen sich blockieren, „antagonisieren“. Es werden daher CCR5- und CRCR4-Korezeptorantagonisten unterschieden, je nachdem, welcher Korezeptor blockiert wird. Mit Maraviroc wurde in 2007 der erste CCR5-Antagonist zugelassen. Bei den CCR5-Antagonisten sind derzeit die oral verfügbaren „small molecules“ und andere Ansätze wie zum Beispiel monoklonale Antikörper zu unterscheiden. Im Folgenden werden Substanzen dieser Wirkstoffklasse besprochen, zu denen Tests am Menschen publiziert wurden.

Neue CCR5-Antagonisten („small molecules“)

Vicriviroc (SCH-D oder 417690) ist bzw. war ein oral bioverfügbarer CCR5-Antagonist von Schering-Plough. Die Entwicklung dieser eigentlich viel versprechenden Substanz wurde im Juli 2010 gestoppt, nach einer gepoolten Analyse zweier Phase III-Studien, VICTOR E3 und E4 (Gathe 2010). Insgesamt 721 vorbehandelte Patienten hatten 30 mg Vicriviroc oder Placebo zu einer optimierten Therapie erhalten, darunter relativ viele Darunavir und/oder Raltegravir. Nach 48 Wochen fanden sich keine Unterschiede zwischen Vicriviroc und Placebo (64 versus 62 % unter 50 Kopien/ml). Trotz deutlicher Unterschiede bei jenen Patienten, die nur noch maximal zwei aktive Medikamente hatten (70 versus 55 %) nahm die Firma diese Daten zum Anlass, die Entwicklung Vicrivirocs einzustellen. Weshalb Vicriviroc dann noch erwähnt wird? Weil das Beispiel Vicriviroc die Probleme verdeutlicht, die neue Substanzen in Zukunft haben werden – angesichts der immer besseren Therapien wird es immer schwieriger, einen Effekt tatsächlich zu zeigen – die Begleittherapie ist einfach zu gut geworden.

Cenicriviroc (TBR-652 oder vorher TAK-652) ist ein neuer, oral verfügbarer CCR5/CCR2-Antagonist, der mittlerweile von Takeda an Tobira verkauft wurde. Labordaten zeigten, dass für eine komplette Resistenz mehrere Mutationen in der V3-Region (und im env Gen) vorhanden sein müssen. Der Tropismus scheint sich durch die Resistenzen nicht zu ändern (Baba 2007). Die orale Bioverfügbarkeit ist gut, die Halbwertzeit sehr lang mit 35-40 Stunden, was eine Einmalgabe ermöglicht. Die orale Verfügbarkeit wird verbessert mit Nahrung. Cenicriviroc scheint auch eine Wirksamkeit gegen CCR2 zu haben, ein Rezeptor, der auf Monozyten, dendritischen und Memory T-Zellen sitzt. Bislang bestehen deswegen trotzdem keine Sicherheitsbedenken, in gesunden Probanden war die Substanz gut verträglich (Palleja 2009). In einer ersten doppelblinden Studie mit 10 Tagen Monotherapie und unterschiedlichen Dosen bei 54 Patienten sank die Viruslast um maximal 1,5-1,8 Log-Stufen (Lalezari 2011, Marier 2011).

INCB9471 ist ein oral verfügbarer CCR5-Antagonist der Firma Incyte. In einer kleinen Studie an 21 HIV-Patienten, die 14 Tage lang Verum oder Plazebo erhalten hatten (Cohen 2007), wurde der Nadir des Viruslastabfalls von 1,82 Logstufen nach 16 Tagen erreicht. Angesichts der langen Halbwertzeit von INCB9471 von 60 Stunden blieb der Effekt bis zum Tag 20 erhalten, 6 Tage nach Ende der Therapie. Im März 2008 gab Incyte freilich bekannt, die Substanz verkaufen zu wollen, um sich auf andere Produkte zu konzentrieren – die Weiterentwicklung ist fraglich.

PF-232798 ist ein oral verfügbarer CCR5-Antagonist von Pfizer bzw. ViiV Healthcare und wohl ein Maraviroc-Backup. Er hat eine lange Halbwertzeit und kann wahrscheinlich einmal pro Tag gegeben werden. In vitro wirkt es gegen Maraviroc-Resistenzen. Gesunde Probanden vertrugen die Substanz gut (Dorr 2008).

SCH532706 ist ein neuer CCR5-Antagonist von Schering, bei dem auf den ersten Blick keine Vorteile gegenüber Vicriviroc erkennbar sind. Bei 12 Patienten sank die Viruslast unter 60 mg SCH532706 (mit 100 mg Ritonavir) um bis zu 1,62 Logstufen nach 15 Tagen (Pett 2009). Eine Einmalgabe scheint möglich zu sein. Möglicherweise gibt es positive Auswirkungen auf die Immunaktivierung (Pett 2010) – allerdings scheint es fraglich, dass diese Substanz nach dem Ende von Vicriviroc weiter verfolgt wird.

Andere neue, innovative CCR5-Blocker

HGS004 (oder CCR5mAb004) von Human Genome Sciences ist ein monoklonaler Antikörper, der offensichtlich in vitro eine sehr hohe Resistenzbarriere aufweist (Giguel 2006). Die Halbwertzeit liegt bei 5-8 Tagen, die Rezeptoren sind bis zu 4 Wochen nach der Einmalgabe noch zu über 80 % besetzt. In einer ersten Studie erhielten 54 ART-naive Patienten einmalige Infusionen zwischen 0,4 und 40 mg/kg CCR5mAb004 oder Plazebo (Lalezari 2008). Mehr als die Hälfte der Patienten in den höheren Dosisarmen zeigte nach 14 Tagen mindestens einen Abfall von einer Logstufe. Möglicherweise hat sich die Firma inzwischen HGS101 zugewandt, einem Antikörper, der in vitro noch deutlich effektiver und vor allem effektiv bei Maraviroc-Resistenzen sein soll (Latinovic 2011).

 

Pro-140 ist ein monoklonaler Antikörper der Firma Progenics, der sich gegen humane CCR5-Rezeptoren richtet (Trkola 2001). Er ist also kein Chemokin-Derivat wie Maraviroc oder Vicriviroc, mit denen sogar eine synergistische Wirkung zu bestehen scheint (Murga 2006). Die Resistenzbarriere ist wahrscheinlich hoch (Jacobson 2010). Pro-140 muss parenteral gegeben werden. Die normale Funktion von CCR5-Rezeptoren soll nicht gestört werden, zumindest nicht in den Dosen, die für die Hemmung der HIV-Replikation erforderlich sind (Gardner 2003). Gesunde Probanden vertrugen intravenöse Einzelgaben gut, und es wurden dosisabhängige Konzentrationen gemessen (Olson 2005). Erstaunlich war die lange Wirkung – die CCR5-Rezeptoren waren teilweise mehr als 60 Tage besetzt (Olson 2006). Bei 39 HIV-Patienten, die intravenösen Einmaldosen zwischen 0,5 und 5,0 mg/kg erhielten, sank die Viruslast in der höchsten Dosis um 1,83 Logstufen bei einem Nadir um den 10. Tag herum (Jacobson 2008). Eine höhere Dosis scheint nicht mehr zu bringen (Jacobsen 2010). Interessanterweise lassen sich vergleichbare Effekte auch bei einer wöchentlichen subkutanen Gabe erreichen (Jacobsen 2010). Wenn sich die bislang gute Verträglichkeit von Pro-140 bestätigt, könnte sich hier die erste Therapie andeuten, die nur einmal pro Woche gegeben werden muss.

ESN-196 ist eine Pilotsubstanz der Firma Euroscreen, die den Korezeptor nicht blockiert, sondern ähnlich dem Chemokin RANTES agonistisch und somit eine Rezeptor-Internalisierung bewirkt (Ferain 2008). Dieser „CCR5-Agonist“ reduziert so die Rezeptordichte auf der Zelloberfläche. In vitro ist er damit so wirksam wie Maraviroc. Sofern er sich in klinischen Versuchen als sicher erweist, könnte er als lang wirksame Substanz auch bei CCR5A-resistenten Viren eine Alternative sein.

Aprepitant (Emend®) ist als Neurokinin-1-Rezeptor-Antagonist bzw. Antiemetikum bei hochemetogenen Chemotherapien zugelassen. Offensichtlich hat es durch die Herunterregulierung von CCR5-Rezeptoren einen Effekt auf R5-trope Viren. Labordaten zeigten dosisabhängige Effekte auf die HIV-Replikation (Wang 2007, Manak 2010). Angeblich laufen Studien bei HIV-Patienten.

CXCR4-Antagonisten

Bei den meisten Patienten sind in den frühen Infektionsstadien R5-Viren zu finden; X4-Viren treten erst in späten Stadien auf. Bei intensiv vorbehandelten Patienten liegen in etwa der Hälfte der Fälle X4-Viren vor (Hoffmann 2007). Theoretisch ist daher die Blockade des CXCR4-Rezeptors attraktiv, da von ihr gerade Patienten mit limitierten Optionen profitieren könnten. Auch die Kombination mit CCR5-Antagonisten erscheint als eine interessante Option. Dennoch ist die Entwicklung der CXCR4-Antagonisten viel weniger fortgeschritten als die der CCR5-Antagonisten (Review: Khan 2007). Dies liegt vor allem daran, dass bei der Blockade von CCR5 zumindest theoretisch weniger klinische Konsequenzen zu befürchten sind – Menschen mit einem angeborenen CCR5-Gendefekt sind gesund. Bei CXCR4 ist dagegen ein angeborener, meist harmloser Defekt im Menschen nicht bekannt. Im Tierversuch hatte die CXCR4-Blockade weitreichende Konsequenzen, zum Beispiel bei der Angiogenese, Hämatopoese oder Hirnentwicklung (Tachibana 1998, Nagasawa 1998, Zou 1998).

Somit sind sicher noch Jahre Grundlagenforschung notwendig, bis man sich an größere klinische Studien wagt. Dennoch: eine Vielzahl chemisch sehr unterschiedlicher Substanzen befindet sich in präklinischer Testung (Jenkinson 2010, Miller 2010, Skerl 2010, Steen 2010, Thakkar 2010) – CXCR4-Antagonisten scheinen eine Substanzgruppe zu sein, von der man sich trotz aller Hürden etwas verspricht. Interessanter Nebeneffekt der bisherigen Forschung war die Erkenntnis, das einige Substanzen offenbar in der Lage sind, Stammzellen zu mobilisieren. So wird eine der Pilotsubstanzen, AMD3100, derzeit unter dem Namen Plexifor als Leukozyten-Wachstumsfaktor bzw. als G-CSF-Alternative weiter entwickelt (Uy 2008). Für eine auf Dauer angelegte HIV-Therapie ist ein solcher Effekt freilich nicht unbedingt erwünscht. Auch bei Lupus erythematodes werden CXCR4-Antagonisten diskutiert (Chong 2009).

AMD 11070 ist ein CXCR4-Antagonist von AnorMED. Gesunde Probanden vertrugen AMD 070 gut, entwickelten allerdings oft eine Leukozytose (Stone 2004). In zwei Pilotstudien (Moyle 2007, Saag 2007) wurde die Wirksamkeit bei HIV-Patienten mit dualtropen Viren bewiesen. Nach 10 Tagen Monotherapie sank die Viruslast bei 7/15 Patienten um mindestens eine Logstufe. Allerdings wurde die Entwicklung 2007 aufgrund einer Lebertoxizität vorläufig gestoppt. Die Bindung an den X4-Rezeptor ist etwas anders lokalisiert als die der Vorläufersubstanz AMD 3100, was hoffen lässt, dass es Spielraum in der Entwicklung neuer, potenterer und weniger toxischer CXCR4-Antagonisten gibt (Wong 2007) – mit AMD 11070 wurde wenigstens ein Anfang gemacht und der Wirksamkeitsnachweis erbracht. Derzeit scheint mit AMD 3465 eine weitere Substanz evaluiert (Bodart 2009).

KRH-3955 und KRH-3140 sind zwei neue CXCR4-Anatagonisten, die sich zumindest im Mausmodell als wirksam erwiesen haben (Tanaka 2006). Besonders KRH-3955 scheint präklinischen Daten zufolge viel versprechend (Murakami 2009), die orale Bioverfügbarkeit scheint gut zu sein (bei Hunden). Ebenfalls präklinisch ist noch POL3026, der möglicherweise helfen könnte, den unter CCR5-Antagonisten selektionierten X4-Shift zu verhindern (Moncunill 2008).

Literatur zu Korezeptorantagonisten

Baba M, Miyake H, Wang X, Okamoto M, Takashima K. Isolation and characterization of human immunodeficiency virus type 1 resistant to the small-molecule CCR5 antagonist TAK-652. Antimicrob Agents Chemother 2007;51:707-15.

Bodart V, Anastassov V, Darkes MC, et al. Pharmacology of AMD3465: a small molecule antagonist of the chemokine receptor CXCR4. Biochem Pharmacol 2009, 78:993-1000.

Chong BF, Mohan C. Targeting the CXCR4/CXCL12 axis in systemic lupus erythematosus. Expert Opin Ther Targets 2009, 13:1147-53.

Cohen C, DeJesus E, Mills A, et al. Potent antiretroviral activity of the once-daily CCR5 antagonist INCB009471 over 14 days of monotherapy. Abstract TUAB106, 4th IAS 2007, Sydney.

Dorr P, Westby M, McFadyen L, et al. PF-232798, a Second Generation Oral CCR5 Antagonist. Abstract 737, 15th CROI 2008, Boston.

Ferain O, Schols D, Bernard J, et al. ESN-196, a novel, small-molecule CCR5 agonist inhibits R5 HIV infection. Abstract 738, 15th CROI 2008, Boston.

Gardner J, Cohen M, Rosenfield SI, Nagashima KA, Maddon PJ, Olson WC. Immunotoxicology of PRO 140: a humanized anti-CCR5 monoclonal antibody for HIV-1 therapy. Abstract 876, Abstract 444, 43rd ICAAC 2003, Chicago.

Gathe J, R Diaz R, Fätkenheuer G, et al. Phase 3 trials of vicriviroc in treatment-experienced subjects demonstrate safety but not significantly superior efficacy over potent background regimens alone. Abstract 54LB, 17th CROI 2010, San Francisco.

Giguel F, Beebe L, Migone TS, Kuritzkes D. The anti-CCR5 mAb004 inhibits hiv-1 replication synergistically in combination with other antiretroviral agents but does not select for resistance during in vitro passage. Abstract 505, 13th CROI 2006, Denver.

Hoffmann C. The epidemiology of HIV coreceptor tropism. Eur J Med Res 2007;12:385-90.

Jacobson J, Thompson M, Fischl M, et al. Phase 2a study of PRO 140 in HIV-infected adults. Abstract HG-1220, 49th ICAAC 2009, San Francisco.

Jacobson JM, Lalezari JP, Thompson MA, et al. Phase 2a study of the CCR5 monoclonal antibody PRO 140 administered intravenously to HIV-infected adults. Antimicrob Agents Chemother 2010, 54:4137-42.

Jacobson JM, Saag MS, Thompson MA, et al. Antiviral activity of single-dose PRO 140, a CCR5 monoclonal antibody, in HIV-infected adults. J Infect Dis 2008, 198:1345-52.

Jacobson JM, Thompson MA, Lalezari JP, et al. Anti-HIV-1 activity of weekly or biweekly treatment with subcutaneous PRO 140, a  CCR5 monoclonal antibody. J Infect Dis 2010, 201:1481-7.

Jenkinson S, Thomson M, McCoy D, et al. Blockade of X4-tropic HIV-1 cellular entry by GSK812397, a potent noncompetitive CXCR4 receptor antagonist. Antimicrob Agents Chemother 2010, 54:817-24.

Khan A, Greenman J, Archibald SJ. Small molecule CXCR4 chemokine receptor antagonists: developing drug candidates. Curr Med Chem 2007;14:2257-77.

Lalezari J, Gathe J, Brinson C, et al. Safety, Efficacy, and Pharmacokinetics of TBR-652, a CCR5/CCR2 Antagonist, in HIV-1-Infected, Treatment-Experienced, CCR5 Antagonist-Naïve Subjects. J AIDS 2011 Feb 11. [Epub ahead of print]

Lalezari J, Yadavalli GK, Para M, et al. Safety, pharmacokinetics, and antiviral activity of HGS004, a novel fully human IgG4 monoclonal antibody against CCR5, in HIV-1-infected patients. J Infect Dis 2008, 197:721-7.

Latinovic O, Reitz M, Le NM, Foulke JS, et al. CCR5 antibodies HGS004 and HGS101 preferentially inhibit drug-bound CCR5 infection and restore drug sensitivity of Maraviroc-resistant HIV-1 in primary cells. Virology 2011, 411:32-40.

Manak MM, Moshkoff DA, Nguyen LT, et al. Anti-HIV-1 activity of the neurokinin-1 receptor antagonist aprepitant and synergistic interactions with other antiretrovirals. AIDS 2010, 24:2789-96.

Marier JF, Trinh M, Pheng LH, Palleja SM, Martin DE. Pharmacokinetics and Pharmacodynamics of TBR-652, a Novel CCR5 Antagonist, in HIV-1-Infected, Antiretroviral Treatment-Experienced and CCR5 Antagonist-Naïve Patients. Antimicrob Agents Chemother 2011 Apr 12. [Epub ahead of print]

Moncunill G, Armand-Ugon M, Clotet I, et al. Anti-HIV Activity and Resistance Profile of the CXCR4 Antagonist POL3026. Mol Pharmacol 2008.

Moyle G, DeJesus E, Boffito M, et al. CXCR4 antagonism: proof of activity with AMD 11070. Abstract 511, 14th CROI 2007, Los Angeles.

Murakami T, Kumakura S, Yamazaki T, et al. The novel CXCR4 antagonist KRH-3955 is an orally bioavailable and extremely potent inhibitor of human immunodeficiency virus type 1 infection: comparative studies with AMD3100. Antimicrob Agents Chemother 2009, 53:2940-8.

Murga JD, Franti M, Pevear DC, Maddon PJ, Olson WC. Potent antiviral synergy between monoclonal antibody and small-molecule CCR5 inhibitors of human immunodeficiency virus type 1. Antimicrob Agents Chemother 2006, 50:3289-96.

Nagasawa T, Tachibana K, Kishimoto T. A novel CXC chemokine PBSF/SDF-1 and its receptor CXCR4: their functions in development, hematopoiesis and HIV infection. Semin Immunol 1998, 10:179-85.

Olson W, Doshan H, Zhan C et al. First-in-humans trial of PRO 140, a humanized CCR5 monoclonal antibody for HIV-1 therapy. Abstract WePe6.2C04, 3rd IAS 2005, Rio de Janeiro.

Olson WC, Doshan H, Zhan C. Prolonged coating of CCR5 lymphocytes by PRO 140, a humanized CCR5 monoclonal antibody for HIV-1 therapy. Abstract 515, 13th CROI 2006, Denver.

Palleja S, Cohen C, J Gathe J, et al. Safety and efficacy of TBR 652, a chemokine receptor 5 (CCR5) antagonist, in HIV 1-infected, antiretroviral (ARV) treatment-experienced, CCR5 antagonist–naïve patients. Abstract 53, 17th CROI 2010, San Francisco.

Pett SL, McCarthy MC, Cooper DA, et al.  A phase I study to explore the activity and safety of SCH532706, a small molecule chemokine receptor-5 antagonist in HIV type-1-infected patients. Antivir Ther 2009, 14:111-5.

Pett SL, Zaunders J, Bailey M, et al. A novel chemokine-receptor-5 (CCR5) blocker, SCH532706, has differential effects on CCR5+CD4+ and CCR5+CD8+ T cell numbers in chronic HIV infection. AIDS Res Hum Retroviruses 2010, 26:653-61.

Saag M, Rosenkranz S, Becker S, et al. Proof of concept of ARV activity of AMD 11070 (an orally administered CXCR4 entry inhibitor): results of the first dosing cohort A studied in ACTG protocol A5210). Abstract 512, 14th CROI 2007, Los Angeles.

Skerlj RT, Bridger GJ, Kaller A, et al. Discovery of Novel Small Molecule Orally Bioavailable C-X-C Chemokine Receptor 4 Antagonists That Are Potent Inhibitors of T-Tropic (X4) HIV-1 Replication. J Med Chem. 2010 Mar 19. [Epub ahead of print]

Steen A, Schwartz TW, Rosenkilde MM. Targeting CXCR4 in HIV Cell-Entry Inhibition. Mini Rev Med Chem. 2010 Jan 21. [Epub ahead of print]

Tachibana K, Hirota S, Iizasa H, et al. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 1998, 393:591-4.

Tanaka Y, Okuma K, Tanaka R, et al. Development of novel orally bioavailable CXCR4 antagonist, KRH-3955 and KRH-3140: binding specificity, pharmacokinetics and anti-HIV activity in vivo and in vitro. Abstract 49 LB, 13th CROI 2006, Denver.

Thakkar N, Pirrone V, Passic S, et al. Persistent interactions between the biguanide-based compound NB325 and CXCR4 result in prolonged inhibition of human immunodeficiency virus type 1 infection. Antimicrob Agents Chemother. 2010 Mar 15. [Epub ahead of print]

Trkola A, Ketas TJ, Nagashima KA, et al. Potent, broad-spectrum inhibition of HIV type 1 by the CCR5 monoclonal antibody PRO 140. J Virol 2001, 75:579-88. Original-Artikel:  http://jvi.asm.org/cgi/content/full/75/2/579?view=full&pmid=11134270

Tsibris AM, Paredes R, Chadburn A, et al. Lymphoma diagnosis and plasma Epstein-Barr virus load during vicriviroc therapy: results of the AIDS Clinical Trials Group A5211. Clin Infect Dis 2009, 48:642-9.

Uy GL, Rettig MP, Cashen AF. Plerixafor, a CXCR4 antagonist for the mobilization of hematopoietic stem cells. Expert Opin Biol Ther 2008, 8:1797-804.

Wang X, Douglas SD, Lai JP, Tuluc F, Tebas P, Ho WZ. Neurokinin-1 receptor antagonist (aprepitant) inhibits drug-resistant HIV-1 infection of macrophages in vitro. J Neuroimmune Pharmacol 2007;2:42-8.

Wong R, Bodard V, Metz M, et al. Understanding the interactions between CXCR4 and AMD 11070, a first-in-class small-molecule antagonist of the HIV coreceptor. Abstract 495, 14th CROI 2007, Los Angeles.

Zou YR, Kottmann AH, Kuroda M, et al. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 1998, 393:595-599.

Neue Fusions-Inhibitoren

Obwohl mit T-20 der erste Entry-Inhibitor ein Fusions-Inhibitor (FI) war, ist hier wenig Neues in Sicht (Review: Eggink 2010). Die oft notwendigen subkutanen Injektionen schrecken ab. Ob „small molecule“-FIs, eine neue Gruppe oral verfügbarer FIs, wirksam sind, muss sich zeigen (Jiang 2004+2005). Möglicherweise lässt sich die Effektivität vieler FIs durch Einfügung von Cholesterolgruppen erhöhen (Ingallinella 2009).

Sifuvirtide ist ein FI, der in China entwickelt wird. In Affen zeigte sich eine längere Halbwertszeit (39 Stunden) und eine erhöhte Affinität gegenüber gp41 als T-20 (Dai 2005). Gesunde Probanden vertrugen Sifuvirtide gut (He 2008), es gibt interessante synergistische Effekte mit T-20 (Pan 2009). Teilweise scheinen allerdings auch Kreuzresistenzen zu bestehen (Liu 2010).

SP01A von Samaritan Pharmaceuticals wirkt anders als alle anderen Hemmer des HIV-Eintritts und ist vor allem deswegen von Interesse. Als Procainhydrochlorid reduziert SP01A die Expression des Schlüsselenzyms HMG-CoA-Reduktase, entzieht der Zellmembran Cholesterol und scheint so nicht nur in vitro die Fusion von Virus und Zelle zu hemmen. Die Wirksamkeit dieser Substanz, die seit Jahren immer wieder bei HIV-Patienten untersucht wurde, konnte bislang in drei Phase-II-Studien gezeigt werden. Sie ist allerdings mäßig, in der höchsten Dosis von 800 mg zeigten lediglich 50 % der Patienten einen Viruslastabfall. Nach 10 Tagen Monotherapie fiel die Viruslast um 0,4, nach 28 Tagen um 0,5 Logstufen. Publiziert wurde dies im Juli 2007 auf Websites der Firma (www.samaritanpharma).

TRI-999 und TRI-1144 sind zwei neue Zweit-Generations-FIs, die von Trimeris in Zusammenarbeit mit Roche entwickelt werden (Delmedico 2006). Potenz und Pharmakokinetik dieser Peptide sollen gegenüber T-20 nach Untersuchungen an Affen deutlich verbessert sein. Zwar ist die Gabe via Injektionen weiterhin notwendig, möglicherweise aber nur einmal pro Woche. Daten zu Untersuchungen am Menschen liegen bislang nicht vor, es soll wohl mit TRI-1144 weiter gehen.

Virip blockiert den Eintritt von HIV-1 in die Zelle, indem es mit dem gp41 Fusionspeptid interagiert. Es wird auch als Anchor- (Verankerungs) Inhibitor bezeichnet. Forscher aus Ulm entdeckten das Peptid in Hämofiltrat, also jener Flüssigkeit, die aus dem Blut von Dialysepatienten filtriert wird, um es durch eine Elektrolytlösung zu ersetzen. Somit ist Virip ein „natürlicher“ Entry-Inhibitor, dessen antiretrovirale Aktivität sich durch leichte Modifikationen bzw. Austausch einiger weniger Aminosäuren noch deutlich steigern ließ (Munch 2007). In einer ersten Studie bei HIV-Patienten führten Dauerinfusionen in der höchsten Dosis zu einem Abfall von etwa einer Logstufe nach 10 Tagen (Forssmann 2010). Die Verträglichkeit war gut, jetzt wird eine subkutane Applikation evaluiert.

Aus den Augen, aus dem Sinn: Gestoppte Entry-Inhibitoren

  • AMD 3100 (CXCR4A) von AnorMed, Kardiotoxizität
  • Aplaviroc/GW873140/AK602 (CCR5A) von GSK, Hepatotoxizität
  • BMS-806, BMS-488043 (Attachment-Inhibitor), schlechte Pharmakokinetik
  • FP-21399 (FI) von Lexigen bzw. Merck, wohl zu schwach
  • Pro-542 (Attachment-Inhibitor) von Progenics, konzentriert sich auf Pro-140
  • SCH-C/Ancriviroc (CCR5A) von Schering-Plough, Herzrhythmusstörungen
  • T-1249 und T-649 (FIs) von Roche/Trimeris, mangelnde Erfolgsaussicht
  • TAK-779, TAK-220 (CCR5A) von Takeda, ersetzt durch TAK-652

Literatur zu neuen Fusions-Inhibitoren

Dai SJ, Dou GF, Qiang XH, et al. Pharmacokinetics of sifuvirtide, a novel anti-HIV-1 peptide, in monkeys and its inhibitory concentration in vitro. Acta Pharmacol Sin 2005, 26:1274-80.

Delmedico M, Bray B, Cammack N, et al. Next generation HIV peptide fusion inhibitor candidates achieve potent, durable suppression of virus replication in vitro and improved pharmacokinetic properties. Abstract 48, 13th CROI 2006, Denver.

Eggink D, Berkhout B, Sanders RW. Inhibition of HIV-1 by fusion inhibitors. Curr Pharm Des 2010, 16:3716-28.

Forssmann WG, The YH, Stoll M, et al. Short-term monotherapy in HIV-infected patients with a virus entry inhibitor against the gp41 fusion peptide. Sci Transl Med 2010, 2:63re3.

He Y, Xiao Y, Song H, et al. Design and evaluation of sifuvirtide, a novel HIV-1 fusion inhibitor. J Biol Chem 2008, 283:11126-34.

Ingallinella P, Bianchi E, Ladwa NA, et al. Addition of a cholesterol group to an HIV-1 peptide fusion inhibitor dramatically increases its antiviral potency. Proc Natl Acad Sci U S A 2009 Mar 18.

Jiang S, Lu H, Liu S, et al. Small molecule HIV entry inhibitors targeting gp41. Abstract TuOa0201. 3rd IAS 2005, Rio de Janeiro.

Jiang S, Lu H, Liu S, Zhao Q, He Y, Debnath AK. N-substituted pyrrole derivatives as novel human immunodeficiency virus type 1 entry inhibitors that interfere with the gp41 six-helix bundle formation and block virus fusion. Antimicrob Agents Chemother 2004, 48:4349-59.

Liu Z, Shan M, Li L, et al. In vitro selection and characterization of HIV-1 variants with increased resistance to sifuvirtide, a novel HIV-1 fusion inhibitor. J Biol Chem 2011, 286:3277-87.

Munch J, Standker L, Adermann K, et al. Discovery and optimization of a natural HIV-1 entry inhibitor targeting the gp41 fusion peptide. Cell 2007;129:263-75.

Pan C, Lu H, Qi Z, Jiang S. Synergistic efficacy of combination of enfuvirtide and sifuvirtide, the first- and next-generation HIV-fusion inhibitors. AIDS. 2009 Feb 24.

Neue Integrase-Inhibitoren

Die durch das HIV-Enzym Integrase vermittelte Integration der viralen DNA in die Wirts-DNA ist ein entscheidender Schritt im Replikationszyklus von HIV. Mit Raltegravir wurde 2007 der erste Integrase-Inhibitor für die Behandlung der HIV-Infektion zugelassen (siehe vorheriges Kapitel). Angesichts dieses großen Erfolgs ist damit zu rechnen, dass sich die klinische Forschung in den kommenden Jahren auf diese Wirkstoffklasse fokussieren wird. Wesentliches Problem scheint derzeit eine klassenübergreifende Kreuzresistenz zu sein, so dass es notwendig sein wird, neue Integrasehemmer zu finden, die anders mit dem Enzym interagieren als Raltegravir – „Me-too-Integrasehemmer“, die sich in Wirkungsweise und Pharmakokinetik nur marginal unterscheiden, sind nicht gefragt (Serrao 2009).

Dolutegravir (GSK-1349572 oder DTG) ist ein neuer Integrasehemmer, der aus der Kooperation von Shinogi und GSK hervorgegangen ist und inzwischen von ViiV Healthcare entwickelt wird. Als Integrasehemmer der zweiten Generation wurde einiges verbessert – darunter vor allem Pharmakokinetik (einmal tägliche, ungeboosterte Gabe möglich) und ein günstiges Resistenzprofil. In einer Phase IIa-Studie an 35 Patienten zeigte sich ein Abfall von 2,5 Logstufen unter 50 mg, 70 % erreichten eine Viruslast unter 50 Kopien/ml (Lalezari 2009). In SPRING-1, einer Phase IIb-Studie, erhielten ca. 200 therapienaive Patienten verschiedene Dosen Dolutegravir (10, 25, oder 50 mg) oder Efavirenz, plus jeweils 2 NRTIs (Arribas 2010). Nach einer Interimsanalyse nach Woche 16 waren in den Dolutegravir-Armen bereits 90-96 % unter der Nachweisgrenze von 50 Kopien/ml, verglichen mit 60 % im Efavirenz-Arm. Beeindruckend war in SPRING-1, wie in allen Studien bislang, die sehr gute Verträglichkeit (Lou 2009).

Die Kreuzresistenzen mit anderen Integrasehemmern scheinen nicht komplett zu sein (Underwood 2009, Seki 2010). Eine wichtige Resistenz liegt wohl bei T124A, aber auch Raltegravir-typische Mutationen am Codon 148, vor allem bei weiteren Mutationen, scheinen die Wirkung zu beeinträchtigen (Garrido 2011). Vorläufige klinische Daten aus den VIKING-Studien zeigen, dass bei Raltegravir-Resistenzen möglicherweise höhere Dosen helfen, die Resistenzen zu überwinden. In VIKING II erreichten 13/24 Patienten mit Raltegravir-Resistenzen unter 10 Tagen Monotherapie mit jeweils 100 mg Dolutegravir eine Viruslast unter 400 Kopien/ml. Dies war mehr als in VIKING I, in der 50 mg verwendet worden waren (Eron 2011). Relevante Interaktionen mit geboosterten PIs bestehen nicht, allerdings reduziert Etravirin die Spiegel deutlich (Song 2011). Dies gilt auch für Antazida – sie sollten zeitlich versetzt eingenommen werden (Patel 2011).

Dolutegravir wird derzeit in der Dosis von 50 mg auch in festen Kombinationen mit ABC+3TC untersucht. Zahlreiche weitere Studien laufen. Insgesamt scheint Dolutegravir eine der wenigen Substanzen zu sein, die es in den nächsten Jahren auf den Markt schaffen könnten.

Elvitegravir (GS-9137, früher JTK-303) ist ein Integrasehemmer von Gilead, der biochemisch den Chinolon-Antibiotika ähnelt (Sato 2006). Wie Raltegravir hemmt auch Elvitegravir den Strangtransfer. Einzeldosen waren oral bioverfügbar, sicher und gut verträglich (Kawaguchi 2006). In einer Studie an 40 HIV-Patienten (therapienaiv und vorbehandelt) sank die Viruslast nach 10 Tagen Monotherapie um etwa 2 Logstufen (DeJesus 2006). Wesentlicher Nachteil scheint zu sein, dass Elvitegravir mit 100 mg Ritonavir geboostert werden muss (Kearney 2006), doch ist dafür dann wohl die tägliche Einmalgabe möglich.

Eine Phase-II-Studie, in der 278 Patienten entweder drei geboosterte Dosen (20, 50 und 125 mg) Elvitegravir oder einen neuen Ritonavir-geboosterten PI erhielten, zeigte ein gutes Ansprechen (Zolopa 2010). Zwar musste der 20 mg-Arm wegen hoher Versagensrate abgebrochen werden, dafür erreichten in den höher dosierten Armen mehr Patienten nach 16 Wochen eine Viruslast unter 50 Kopien/ml (ca. 40 versus 30 %). Vor vorschnellen Vergleichen mit den Raltegravir-Daten sei gewarnt, da diese Studie anders konzipiert war – es wurde gegen einen aktiven PI und nicht gegen Plazebo verglichen (Zolopa 2007). Die Verträglichkeit war wie bei Raltegravir sehr gut. Die Dosis, mit der es jetzt in weitere Studien geht, wird 125 mg sein.

Auch bei Elvitegravir lassen sich in vitro Resistenzmutationen selektionieren, es scheint ebenfalls mindestens zwei Resistenzpfade zu geben, und zwar über T66I oder E92Q (Shimura 2008). Vor allem E92Q bedingt eine hohe Resistenz (36-fach). Bei Y143, einer Raltegravir-Resistenz, scheint noch eine Wirkung zu bestehen (Métifiot 2011). Größtenteils überlappen sich jedoch die Resistenzen von Elvitegravir und Raltegravir, klassenübergreifende Kreuzresistenzen sind also wahrscheinlich (Kodama 2006). Eine kleine Studie, in der Patienten von Elvitegravir auf Raltegravir wechselten, zeigte kein virologisches Ansprechen (DeJesus 2007).

Wesentliche Interaktionen mit Elvitegravir sind nicht zu erwarten, zumindest nicht mit NRTIs, Darunavir, Tipranavir, Fosamprenavir oder Etravirin. Die Dosis von Maraviroc muss allerdings halbiert werden (Mathias 2007, Ramanathan 2008).

Um nicht auf Ritonavir als Booster-Substanz angewiesen zu sein, untersucht Gilead derzeit die Kombination von Elvitegravir mit Cobicistat (GS-9350), einem so genannten Pharmakoenhancer (PKE). Bei gesunden Probanden wurden gute Effekte auf die Pharmakokinetik gesehen (German 2010), so dass jetzt eine QUAD-Pille entwickelt wird, die die Kombination aus Tenofovir, FTC, Cobicistat und Elvitegravir enthält. In einer ersten Phase II-Studie wurde die QUAD-Pille bei 71 therapienaiven Patienten doppelblind gegen Atripla® getestet, mit vergleichbarem Effekt nach 24 Wochen (Cohen 2011).

GSK-744 ist wohl „nur“ ein Backup für Dolutegravir, aber nicht minder effektiv. In einer ersten doppelblind-randomisierten Studie an 48 Probanden war die Substanz über 14 Tage gut verträglich – unter den 13 HIV-Patienten sank die Viruslast im Median um 2,6 Logstufen (Min 2009).

MK-2048 – ist ein Integrasehemmer der 2.Generation von MSD, mit dem wohl nur begrenzte Kreuzresistenzen zu Raltegravir bestehen (Goethals 2010, Bar-Magen 2011, Van Weesenbeeck 2011). Es soll wohl auch als PrEP untersucht werden.

Aus den Augen, aus dem Sinn: Zuletzt gestoppte Integrase-Inhibitoren

  • BMS-707035, wohl kein Vorteil gegenüber Raltegravir erkennbar
  • GSK-364735 (GSK), Lebertoxizität in Affen, 2007 in Phase IIa gestoppt
  • L-870810 (Merck), Lebertoxizität in Hunden
  • S-1360 (Shionogi/GSK), wohl zu toxisch, in 2005 gestoppt

Literatur zu neuen Integrase-Inhibitoren

Arribas J, Lazzarin A, Raffi F, et al. Once-daily S/GSK1349572 as part of combination therapy in antiretroviral-naive adults: rapid and potent antiviral responses in the interim 16-week analysis from SPRING-1 (ING112276). Abstract THLBB205, XVIII IAC 2010, Vienna.

Bar-Magen T, Sloan RD, Donahue DA, et al. Identification of novel mutations responsible for resistance to MK-2048, a second-generation HIV-1 integrase inhibitor. J Virol 2010, 84:9210-6.

Cohen C, Elion R, Ruane P, et al. Randomized, phase 2 evaluation of two single-tablet regimens elvitegravir/cobicistat/emtricitabine/tenofovir disoproxil fumarate versus efavirenz/emtricitabine/tenofovir disoproxil fumarate for the initial treatment of HIV infection. AIDS 2011, 25:F7-12.

DeJesus E, Berger D, Markowitz M, et al. Antiviral activity, pharmacokinetics, and dose response of the HIV-1 integrase inhibitor GS-9137 (JTK-303) in treatment-naive and treatment-experienced patients. J AIDS 2006, 43:1-5.

DeJesus E, Cohen C, Elion R, et al. First report of raltegravir (RAL, MK-0158) use after virologic rebound on elvitegravir (EVT, GS 9137). Abstract TUPEB032, 4th IAS 2007, Sydney.

Eron J, Kumar P, Lazzarin A, et al. DTG in subjects with HIV exhibiting RAL resistance: functional monotherapy results of VIKING study cohort II. Abstract 151LB, 18th CROI 2011, Boston.

Garrido C, Soriano V, Geretti AM, et al. Resistance associated mutations to dolutegravir (S/GSK1349572) in HIV-infected patients – Impact of HIV subtypes and prior raltegravir experience. Antiviral Res 2011, 90:164-167.

German P, Warren D, West S, Hui J, Kearney BP. Pharmacokinetics and bioavailability of an integrase and novel pharmacoenhancer-containing single-tablet fixed-dose combination regimen for the treatment of HIV. J AIDS 2010, 55:323-9.

Goethals O, Vos A, Van Ginderen M, et al. Primary mutations selected in vitro with raltegravir confer large fold changes in susceptibility to first-generation integrase inhibitors, but minor fold changes to inhibitors with second-generation resistance profiles. Virology 2010, 402:338-46.

Kawaguchi I, Ishikawa T, Ishibashi M, Irie S, Kakee A. Safety and pharmacokinetics of single oral dose of JTK-303/GS 9137, a novel HIV integrase inhibitor, in HIV healthy volunteers. Abstract 580, 13th CROI 2006, Denver.

Kearney B, Mathias A, Zhong L, et al. Pharmacokinetics/pharmacodynamics of GS-9137 an HIV integrase inhibitor in treatment-naive and experienced patients. Abstract 73, 7th Int Workshop Clin Pharm HIV Therapy 2006, Lisbon, Portugal.

Kodama E, Shimura K, Sakagami Y, et al. In vitro antiviral activity and resistance profile of a novel HIV integrase inhibitor JTK-303/GS-9137. Abstract H-254, 46th ICAAC 2006, San Francisco.

Lalezari J, Sloan L, DeJesus E, et al. Potent antiviral activity of S/GSK1349572, a next generation integrase inhibitor (INI), in INI-naive HIV-1-infected patients. Abstract TUAB105, 5th IAS 2009, Cape Town.

Lou Y, Min S, Chen S, et al. Meta-analysis of safety for short-term dosing of an HIV integrase inhibitor, S/GSK1349572, from seven clinical studies. Abstract H-931/414, 49th ICAAC 2009, San Francisco.

Mathias A, Hinkle J, Enejosa J, et al. Lack of pharmacokinetic interaction between ritonavir-boosted GS-9137 (elvitegravir) and Tipranavir/r. Abstract TUPDB06, 4th IAS 2007, Sydney.

Mathias A, Shen G, Enejosa J, et al. Lack of pharmacokinetic interaction between ritonavir-boosted GS-9137 (elvitegravir) and Darunavir/r. Abstract TUPDB03, 4th IAS 2007, Sydney.

Mathias AA, West S, Hui J, Kearney BP. Dose-response of ritonavir on hepatic CYP3A activity and elvitegravir oral exposure. Clin Pharmacol Ther 2009, 85:64-70.

Métifiot M, Vandegraaff N, Maddali K, et al. Elvitegravir overcomes resistance to raltegravir induced by integrase mutation Y143. AIDS 2011 Apr 18. [Epub ahead of print]

Min S, DeJesus E, McCurdy L, et al. Pharmacokinetics (PK) and safety in healthy and HIV-infected subjects and short-term antiviral efficacy of S/GSK1265744, a next generation once daily HIV integrase inhibitor. Abstract H-1228, 49th ICAAC 2009, San Francisco.

Patel P, Song I, Borland J, et al. Pharmacokinetics of the HIV integrase inhibitor S/GSK1349572 co-administered with acid-reducing agents and multivitamins in healthy volunteers. J Antimicrob Chemother 2011 Apr 28. [Epub ahead of print]

Ramanathan S, Kakuda TN, Mack R, West S, Kearney BP. Pharmacokinetics of elvitegravir and etravirine following coadministration of ritonavir-boosted elvitegravir and etravirine. Antivir Ther 2008, 13:1011-7.

Ramanathan S, Mathias AA, Shen G, et al. Lack of clinically relevant drug-drug interaction between ritonavir-boosted GS-9137 (elvitegravir) and fosamprenavir/r. Abstract WEPEB014, 4th IAS 2007, Sydney.

Ramanathan S, Shen G, Hinkle J, Enejosa J, Kearney BP. Pharmacokinetics of coadministered ritonavir-boosted elvitegravir and zidovudine, didanosine, stavudine, or abacavir. J AIDS 2007;46:160-6.

Ramanathan S, West S, Abel S, et al. Pharmacokinetics of coadministered ritonavir-boosted elvitegravir plus maraviroc. Abstract H-1425, 47th ICAAC 2007, Chicago.

Sato M, Motomura T, Aramaki H, et al. Novel HIV-1 integrase inhibitors derived from quinolone antibiotics. J Med Chem 2006, 49:1506-8.

Seki T, Kobayashi M, Wakasa-Morimoto C, et al. S/GSK1349572 is a potent next generation HIV Integrase inhibitor and demonstrates a superior resistance profile substantiated with 60 integrase mutant molecular clones. Abstract 555, 17th CROI 2010, San Francisco.

Serrao E, Odde S, Ramkumar K, Neamati N. Raltegravir, elvitegravir, and metoogravir: the birth of „me-too“ HIV-1 integrase inhibitors. Retrovirology. 2009 Mar 5;6:25.

Shimura K, Kodama E, Sakagami Y, et al. Broad antiretroviral activity and resistance profile of the novel human immunodeficiency virus integrase inhibitor elvitegravir (JTK-303/GS-9137). J Virol 2008;82:764-74.

Song I, Borland J, Chen S, et al. Effect of Atazanavir and Atazanavir/Ritonavir on the Pharmacokinetics of the Next-Generation HIV Integrase Inhibitor, S/GSK1349572. Br J Clin Pharmacol. 2011 Feb 22. [Epub ahead of print]

Song I, Borland J, Min S, et al.  The effect of etravirine alone and with ritonavir-boosted protease inhibitors on the pharmacokinetics of dolutegravir. Antimicrob Agents Chemother 2011 May 9. [Epub ahead of print]

Song I, Min S, Borland J, et al. The effect of ritonavir-boosted protease inhibitors (PIs) on the HIV integrase inhibitor, S/GSK1349572, in healthy subjects. Abstract A1-1304/37, 49th ICAAC 2009, San Francisco.

Song I, Patel A, Min S, et al. Evaluation of antacid and multivitamin (MVI) effects on S/GSK1349572 pharmacokinetics (PK) in healthy subjects. Abstract A1-1305/38, 49th ICAAC 2009, San Francisco.

Underwood M, Johns B, Sato A, Fujiwara T, Spreen W. S/GSK1349572: a next generation integrase inhibitor with activity against integrase inhibitor resistant clinical isolates from patients experiencing virologic failure while on raltegravir therapy. Abstract WEPEA098, 5th IAS 2009, Cape Town.

Van Wesenbeeck L, Rondelez E, Feyaerts M, et al. Cross-resistance profile determination of two second-generation HIV-1 integrase inhibitors using a panel of recombinant viruses derived from raltegravir-treated clinical isolates. Antimicrob Agents Chemother 2011, 55:321-5.

Zolopa AR, Berger DS, Lampiris H, et al. Activity of elvitegravir, a once-daily integrase inhibitor, against resistant HIV Type 1: results of a phase 2, randomized, controlled, dose-ranging clinical trial. J Infect Dis 2010, 201:814-22.

Neue Maturations-Inhibitoren

Maturations-Inhibitoren („Reifungshemmer“) hemmen die HIV-Replikation in einer späten Phase des Vermehrungszyklus, nämlich bei der Knospung neuer Virionen (Review: Salzwedel 2007). Wie bei den Integrasehemmern konnte erstmals 2005 in vivo eine antivirale Wirkung gezeigt werden. Maturations-Inhibitoren sind damit zweifellos eine interessante neue Substanzklasse. Ob es jemals eine Substanz in die Klinik schaffen wird, bleibt derzeit jedoch unklar – während der Entwicklung von Bevirimat, der Pioniersubstanz, sind viele Probleme offensichtlich geworden.

Bevirimat (MPC 4326, früher auch PA-457) ist ein Derivat der Betulinsäure, die als Triterpencarbonsäure aus Birkenrinde isolierbar ist. Bevirimat, inzwischen von Panacos an Myriad Pharmaceuticals verkauft, hemmt die Knospung bzw. Reifung neuer Virionen (Li 2003). Gehemmt wird die Umwandlung des Kapsid-Precursor-Proteins p25 in das reife Kapsid-Protein p24, wodurch nicht-infektiöse Viren entstehen. Die lange Halbwertszeit erlaubt die eine einmal tägliche Gabe (Martin 2007, Smith 2007). Bislang wurde Bevirimat, das inzwischen bei über 650 Probanden und Patienten getestet wurde, gut vertragen. Dies gilt auch für die Kombination mit Atazanavir, bei dem Interaktionen befürchtet worden waren (Martin 2008). Interaktionen scheinen dagegen mit Darunavir (Spiegel von Bevirimat sinken), aber auch mit Raltegravir (Raltegravir-Spiegel steigen) zu bestehen (Beelen 2010).

Im Herbst 2005 wurde eine erste plazebokontrollierte IIa-Studie publiziert, in der Patienten 10 Tage Bevirimat oral erhalten hatten (Beatty 2005). Unter 200 mg sank die Viruslast im Median um 1,03 Logstufen, unter 100 mg noch um 0,48 Logstufen. Allerdings waren bei einigen Patienten keinerlei Effekte auf die Viruslast nachweisbar, was wohl auf „natürliche“ Polymorphismen im Gag-Gen zurückzuführen ist (van Baelen 2009, Lu 2011). Patienten mit Viren, die vor Therapiebeginn keine Gag-Polymorphismen (Mutationen) an den Positionen Q369, V370, oder T371 zeigten, sprechen besser auf Bevirimat an. In einer neueren Monotherapie-Studie mit höheren Dosen bei 32 Patienten zeigte sich nach 14 Tagen mit 200 oder 300 mg ein Abfall der Viruslast um 0,54 bzw. 0,7 Logstufen. Ohne Polymorphismen lag der Effekt oberhalb einer Logstufe, mit Polymorphismen nur bei 0,2 log (Bloch 2009). Ohne diese Gag-Polymorphismen scheinen insgesamt nur etwa 50‑70 % der Patienten zu sein. Es bestehen offenbar keine Unterschiede zwischen therapienaiven und vorbehandelten Patienten, auch gibt es wohl keine Abhängigkeit vom Grad der Immunschwäche (Margot 2009, Knapp 2009, Seclén 2010). Allerdings scheint es einen engen Zusammenhang mit PI-Resistenzen zu geben (Verheyen 2010).

Klar geworden ist also, dass wohl vor einer Therapie mit Bevirimat und evtl. auch anderen Maturations-Inhibitoren ein Test auf diese GagPolymorphismen notwendig sein wird – analog zum Tropismus-Test bei CCR5-Antagonisten. Die Firma Myriad erklärte im Juni 2010, die Entwicklung von Bevirimat nicht weiter zu verfolgen – es ist damit unklar, ob und wie es weiter geht.

PA1050040 ist Bevirimat wohl relativ ähnlich, wirkt auf die gleiche Weise, ist aber wohl auch gegen Bevirimat-resistente Viren (mit L363M) wirksam. Die PK-Daten scheinen besser zu sein, das Interaktionspotential geringer. Eine Phase I-Studie hat laut Panacos begonnen (Kilgore 2007).

UK-201844 ist ein Maturations-Inhibitor von Pfizer. Er wurde entdeckt, nachdem man mehr als eine Million (!) Substanzen gescreent hatte (Blair 2007). Der Wirkmechanismus scheint in einer Interaktion mit der gp160-Prozessierung zu liegen, die zur Produktion nicht-infektiöser Viren führt.

BIT-225 von der australischen Firma Biotron ist ein spezifischer Inhibitor der HIV-Replikation in Makrophagen, nicht aber in T-Zellen (Khoury 2007). Er wirkt über einen ganz eigenen Mechanismus als Vpu-Ionenkanal-Inhibitor und hemmt die Freisetzung viraler Partikel aus Makrophagen. BIT225 könnte bei der Eradikation aus latenten Zellreservoiren, zu denen Monozyten/Makrophagen bekanntlich zählen, eine Rolle spielen. Laut Biotron wurde im September 2007 eine Phase-I-Studie erfolgreich abgeschlossen, bei der bei 40 gesunden Probanden unter Dosen von 35-400 mg keine relevante Toxizität und akzeptable PK-Daten beobachtet wurden.

MPC–9055 ist wie Bevirimat ein Maturations-Inhibitor der US-Firma Myriad Pharmaceuticals aus Salt Lake City. Bei 55 gesunden Probanden zeigte sich eine gute Verträglichkeit und eine akzeptable Pharmakokinetik (Beelen 2009). Nach dem Ende von Bevirimat wird es wohl auch mit MPC-9055 nicht weiter gehen.

Literatur zu Maturations-Inhibitoren

Beatty G, Jacobson J, Lalezari J, et al. Safety and Antiviral Activity of PA-457, the First-In-Class Maturation Inhibitor, in a 10-Day Monotherapy Study in HIV-1 Infected Patients. Abstract Abstract H-416D, 45th ICAAC 2005, Washington.

Beelen A, Balch A, Swabb E. MPC-4326 drug-drug interaction profile. Abstract 615, 17th CROI 2010, San Francisco.

Beelen A, Otto J, Fidler M, et al. Phase 1, single ascending oral dose study of the safety, tolerability, and pharmacokinetics of a novel HIV-1 maturation inhibitor in HIV- healthy volunteers. Abstract 570, 16th CROI 2009, Montréal.

Blair W, Cao J, Jackson L, et al. Identification and characterization of UK-201844, a novel inhibitor that interferes with human immunodeficiency virus type 1 gp160 processing. Antimicrob Agents Chemother 2007, 51:3554-61.

Bloch M, Bodsworth N, Fidler M, et al. Efficacy, safety and pharmacokinetics of MPC-4326 (bevirimat dimeglumine) 200mg BID and 300mg BID monotherapy administered for 14 days in subjects with HIV-1 infection. Abstract H-1230, 49th ICAAC 2009, San Francisco.

Khoury G, Ewart G, Luscombe C, et al. The antiretroviral efficacy of a novel compound BIT225: inhibition of HIV-1 release from human macrophage reservoirs. Abstract MOPDX06, 4th IAS 2007, Sydney.

Kilgore N, Reddick M, Zuiderhof M, et al. Characterization of PA1050040, a second generation HIV-1 maturation inhibitor. Abstract MOPDX05, 4th IAS 2007, Sydney

Knapp D, Huang S, Harrigan R. Stable prevalence of bevirimat-related HIV gag polymorphisms both before and after HAART exposure. Abstract 636, 16th CROI 2009, Montréal.

Lalezari J, Richmond G, Thompson M, et al. Pharmacokinetics and safety of a novel 100 mg tablet formulation of MPC-4326 in subjects with HIV-1 infection. Abstract H-1309/42, 49th ICAAC 2009, San Francisco.

Li F, Goila-Gaur R, Salzwedel K, et al. PA-457: a potent HIV inhibitor that disrupts core condensation by targeting a late step in Gag processing. Proc Natl Acad Sci U S A 2003, 100:13555-60.

Lu W, Salzwedel K, Wang D, Chakravarty S, Freed EO, Wild CT, Li F.A Single Polymorphism in HIV-1 Subtype C SP1 is Sufficient to Confer Natural Resistance to the Maturation Inhibitor, Bevirimat. Antimicrob Agents Chemother. 2011 Apr 18. [Epub ahead of print]

Margot N, Gibbs C, Miller M. Phenotypic susceptibility to bevirimat among HIV-infected patient isolates without prior exposure to bevirimat. Abstract 637, 16th CROI 2009´, Montréal.

Martin DE, Blum R, Wilton J, et al. Safety and pharmacokinetics of Bevirimat (PA-457), a novel inhibitor of human immunodeficiency virus maturation, in healthy volunteers. Antimicrob Agents Chemother 2007;51:3063-6.

Martin DE, Galbraith H, Schettler J, Ellis C, Doto J. Pharmacokinetic properties and tolerability of bevirimat and atazanavir in healthy volunteers: an open-label, parallel-group study. Clin Ther 2008, 30:1794-805.

Salzwedel K, Martin DE, Sakalian M. Maturation inhibitors: a new therapeutic class targets the virus structure. AIDS Rev 2007;9:162-72.

Seclén E, González Mdel M, Corral A, et al. High prevalence of natural polymorphisms in Gag (CA-SP1) associated with reduced response to Bevirimat, an HIV-1 maturation inhibitor. AIDS 2010, 24:467-9.

Smith PF, Ogundele A, Forrest A, et al. Phase I and II study of the safety, virologic effect, and PKs/pharmacodynamics of single-dose 3-o-(3´,3´-dimethylsuccinyl)betulinic acid (bevirimat) against HIV infection. Antim Ag Chemoth 2007;51:3574-81.

Van Baelen K, Salzwedel K, Rondelez E, et al. HIV-1 Susceptibility to the Maturation Inhibitor Bevirimat Is Modulated by Baseline Polymorphisms in Gag SP1. Antimicrob Agents Chemother. 2009 Feb 17.

Verheyen J, Verhofstede C, Knops E, et al. High prevalence of bevirimat resistance mutations in protease inhibitor-resistant HIV isolates. AIDS 2010, 24:669-73.


Immuntherapien

Neben der „herkömmlichen“ antiretroviralen Therapie werden auch immunomodulatorische Therapiestrategien erprobt. Obwohl sie immer wieder als Alternative bzw. Ergänzung diskutiert werden: den Beweis eines klaren klinischen Benefits sind bislang noch alle Therapien schuldig geblieben. Das jüngste Beispiel ist das Scheitern der beiden großen IL-2-Studien (siehe unten). Einige Ansätze sollen dennoch im Folgenden in alphabetischer Reihenfolge kurz angerissen werden.

Cyclosporin A (Sandimmun®) je weniger das Immunsystem aktiviert ist, desto weniger Substrat bzw. Replikationsmöglichkeiten gibt es für HIV – ein verlockender theoretischer Ansatz. Cyclosporin, das sonst zur Prophylaxe von Organtransplantat-Abstoßungen eingesetzt wird, könnte solch ein Inaktivator des Immunsystems sein (Rizzardi 2002). In klinischen Studien enttäuschte Cyclosporin A allerdings: es hat weder Einfluss auf CD4/CD8-Zellzahlen noch auf die Expression von Aktivierungsmarkern (Calabrese 2002, Lederman 2006). Dies gilt nicht nur für chronisch, sondern auch für akut infizierte Patienten (Miro 2009, Markowitz 2010). Cyclosporin A hat daher für HIV-Patienten wohl keine Zukunft.

G-CSF (granulocyte colony-stimulating factor) gibt es u.a. als Filgrastim (Neupogen®), Lenograstim (Granocyte®) und neuerdings auch als (kostengünstigere) Biosimilars. Es ist u.a. zugelassen für andauernde Neutropenien bei fortgeschrittener HIV-Infektion zur Verhinderung bakterieller Infektionen. In einer randomisierten Studie an 258 HIV-Patienten mit CD4-Zellen unter 200/μl lag die Rate schwerer Neutropenien nach 24 Wochen bei 2 % versus 22 % in der Kontrollgruppe (Kuritzkes 1998). Die Inzidenz bakterieller Infektionen sank um 31 %, die Zahl der Krankenhaustage um 45 %. Ein Effekt auf die HI-Viruslast war nicht erkennbar. Bei Patienten mit CMV-Retinitis wurde sogar ein Überlebensvorteil durch G-CSF gezeigt (Davidson 2002). Obwohl schwere Neutropenien durch ART selten geworden sind, kann G-CSF heute insbesondere bei Chemotherapie, Interferon oder anderen myelosuppressiven Medikamenten wie Valganciclovir sinnvoll sein.

GM-CSF (granulocyte-macrophage colony-stimulating factor) gibt es als Molgramostim (Leucomax®) oder Sargramostim (Prokine®). In drei doppelblind randomisierten Studien zeigte sich ein leichter Abfall der HI-Viruslast (Angel 2000, Skowron 1999, Brites 2000), in einer Studie an Patienten mit unkontrollierter Infektion allerdings ein leichter Anstieg (Jacobson 2003). Während Therapiepausen scheint durch GM-CSF ein übermäßiger CD4-Zellabfall verhindert werden zu können (Fagard 2003). GM-CSF kann jedoch angesichts der Kosten und Nebenwirkungen außerhalb klinischer Studien nicht empfohlen werden – in Europa gibt es ohnehin keine Zulassung für GM-CSF.

Hydroxyurea (HU, Litalir®) ist ein altes Chemotherapeutikum, das noch heute bei chronischen myeloproliferativen Erkrankungen eingesetzt wird. Es hemmt die DNA-Synthese über die Ribonukleotid-Reduktase und führt zu einem intrazellulären Mangel an Deoxynukleosid-Triphosphaten. Schon 1994 wurden synergistische Effekte mit DDI auf die HIV-Replikation gezeigt (Lori 1994). 1998 sorgte dann eine plazebokontrollierte Schweizer Studie an 144 Patienten für Aufsehen: Nach 12 Wochen hatten unter HU 54 % versus 28 % im Plazeboarm eine Viruslast unter 200 Kopien/ml erreicht (Rutschmann 1998). Regelrecht in Mode kam HU schließlich mit dem Fall des „Berlin-Patienten“ – jenem Patienten, der in der akuten Infektion neben Indinavir+DDI auch HU einnahm und später auch ohne ART keine messbare Plasmavirämie hatte (Lisziewicz 1999). Lag es an Hydroxyurea? Viele Ärzte fingen an, HU zu verschreiben. Manch einer träumte von einer billigen Option in Kombination mit DDI für Afrika. Die Hoffnungen schwanden freilich schnell. Vor allem die Kombination mit DDI+D4T erwies sich als problematisch. Schwere Polyneuropathien (Moore 2000) und tödliche Pankreatitiden (Havlir 2001, Morre 2001) sorgten für Ernüchterung. Drei kontrollierte Studien zeigten außer Toxizität keinerlei positiven Effekt (Blanckenberg 2004, Stebbing 2004, Swindells 2005). Auch in der randomisierten Studie zur Primärinfektion blieb es ohne Wirkung – der Berlin-Patient ließ sich nicht „reproduzieren“ (Zala 2002). Fazit: Ein Argument für die weitere Erforschung oder gar Einsatz von Hydroxyurea ist nicht mehr zu erkennen.

Interferone haben einen antiretroviralen Effekt (Mildvan 1996), er liegt unter 3 Mio. IE täglich oder auch unter pegyliertem Interferon wöchentlich bei etwa 0,5–1 Logstufen (Haas 2000, Hatzakis 2001, Asmuth 2010). Wir haben Patienten gesehen, die unter einer HCV-Therapie mit Interferon auch mit der HI-Viruslast unter der Nachweisgrenze lagen – und zwar ohne ART! Weil Interferone jedoch subkutan gespritzt werden müssen und nicht unerhebliche Nebenwirkungen haben, sind sie in der HIV-Therapie jedoch nicht weiter verfolgt worden. Ob die Pegylierung der Interferone daran etwas ändern wird, scheint fraglich.

Interleukin-2 (IL-2, Aldesleukin, Proleukin®) ist ein Zytokin, das von aktivierten T-Zellen produziert wird und die Proliferation und Zytokinproduktion von T-, B- und NK-Zellen anregt. Zugelassen ist es in Deutschland zur Behandlung des metastasierten Nierenzellkarzinoms. Interleukin-2 wird subkutan appliziert; der wohl wichtigste Effekt sind dauerhafte CD4- und CD8-Zellanstiege. Anfangs steigen meist Memory-Zellen, gefolgt von naiven T-Zellen (Chun 1999, Carcelain 2003). Der Effekt von IL-2 beruht wohl vor allem auf einem reduzierten T-Zell-Turnover bzw. Zelltod (Kovacz 2005, Sereti 2005, Vento 2006).

Die Frage, ob die IL-2 bedingten CD4-Zellanstiege einen klinischen Benefit haben, wurde in 2009 mit ESPRIT und SILCAAT beantwortet, zwei große, randomisierte und über Jahre angelegte Studien (Abrams 2009). In ESPRIT hatten insgesamt 4.131 Patienten mit mehr als 300 CD4-Zellen/µl zusätzlich zu einer ART entweder IL-2 oder nicht erhalten. In SILCAAT wurden bei ähnlichem Design insgesamt 1.695 Patienten mit 50-299 CD4-Zellen/µl aufgenommen. Die präsentierten Resultate waren sehr enttäuschend: Obwohl in beiden Studien ein lang anhaltender Effekt auf die CD4-Zellen durch IL-2 zu beobachten war (in ESPRIT im Durchschnitt 160, in SILCAAT immerhin noch 59 CD4-Zellen/µl) schlug sich dies nicht in einem klinischen Benefit nieder. Patienten unter IL-2 hatten trotz der besseren CD4-Zellen nicht weniger opportunistische Infektionen. Auch die Mortalität war nicht reduziert. In ESPRIT war zudem die Rate schwerer unerwünschter Ereignisse durch Interleukin-2 erhöht. Auch in einer weiteren randomisierten Studie (STALWART) wurde ähnliches beobachtet (Tavel 2011). Fazit: Nach SILCAAT, ESPRIT und STALWARTist die Gabe von IL-2 als HIV-Therapie nicht mehr zu vertreten. Dies gilt auch für jene Patienten, bei denen trotz guter Virussuppression die CD4-Zellen niedrig bleiben. Es ist zu befürchten, dass man bei diesen Patienten, die ohnehin nur selten an AIDS erkranken, mit einer nebenwirkungsreichen und teuren Therapie nur Laborkosmetik betreibt.

Interleukin-7 scheint viel versprechender zu sein. Dieses Zytokin spielt eine fundamentale Rolle in der T-Zell-Homöostase und beeinflusst die Bildung und Reifung von CD4-Zellen (Review: Chahroudi 2010). In zwei Pilotstudien an 6 bzw. 16 HIV-Patienten wurden mit verschiedenen subkutanen Dosen gute CD4-Zellanstiege beobachtet. Die Verträglichkeit gut, Interleukin-2 typische Nebenwirkungen traten nicht auf (Levy 2009, Sereti 2009). Wenn sich diese Resultate bestätigen, könnte Interleukin-7 durchaus eine Option für jene Patienten werden, deren Immunrekonstitution trotz guter Virussuppression unter ART mangelhaft bleibt – man darf gespannt sein, wie es nach dem Ende von Interleukin-2 weiter geht.

Interleukin-12 stimuliert T-Lymphozyten und NK-Zellen, und die Substanz scheint in der Lage zu sein, eine Th1-vermittelte Immunantwort zu generieren. In einer randomisierten Phase-I-Studie mit 100 ng/kg 2 x/Woche wurde die Substanz zwar gut vertragen, sie hatte jedoch keinen Effekt auf Lymphozyten-subpopulationen, antigenspezifische Immunantwort oder Viruslast (Jacobson 2002). Eine Weiterentwicklung ist fraglich, dies gilt auch für Interleukin-10 (Angel 2000) oder Interleukin-15 (Ahmad 2005). Im Zeitalter effektiver und gut verträglicher Therapien liegt die Messlatte für experimentelle Therapien immer höher.

Kortikosteroide wurden immer wieder diskutiert. Kontrollierten Studien hielt diese Therapie bislang nicht stand. In einer plazebokontrollierten Studie mit 0,5 mg Prednison/kg über 8 Wochen zeigten sich keine Effekte hinsichtlich CD4-Zellen oder Viruslast (McComsey 2001). In ACTG 349 erhielten 24 Patienten in einem doppelblind randomisierten Design relativ hohe Dosen (40 mg) Prednison pro Tag oder nicht (Wallis 2003). Nach 8 Wochen wurde ein Trend zugunsten höherer CD4-Zellen im Prednison-Arm beobachtet, doch kein Effekt hinsichtlich Aktivierungsmarker oder Apoptose. Zwei Patienten unter Prednison entwickelten eine Hüftkopfnekrose. Spätestens nach dieser Studie sollte man sich den Einsatz von Steroiden aus „immunologischen“ Gründen gut überlegen.

Murabutide ist ein synthetisches Muramyldipeptid mit einer Vielzahl von Effekten auf das Immunsystem. So kann es die unspezifische Resistenz gegenüber Infektionen erhöhen, antiinflammatorische Zytokine und Wachstumsfaktoren induzieren und die antiviralen Effekte von Zytokinen wie IL-2 oder Interferon verstärken. Bei HIV-Patienten ist es vor allem in Frankreich als Immunmodulator eingesetzt worden, allerdings mit allenfalls mäßigem Effekt (Bahr 2003).

Mycophenol (Cellcept®) ist ein Hemmer der Inosinmonophosphat (IMP)-Dehydrogenase und wird sonst zur Prophylaxe von akuten Transplantatabstoßungen sowie bei Autoimmunerkrankungen eingesetzt. Durch die Hemmung der Lymphozyten-Proliferation sollen Zielzellen reduziert und so die HIV-Replikation gehemmt werden. Erste Berichte scheinen einen Effekt auf die Viruslast zumindest in einigen Patienten zu belegen (Margolis 2002, Press 2002). Ob dies randomisierten Studien standhalten wird, ist wohl sehr fraglich (Sankatsing 2004, Margolis 2006).

Remune® als Prototyp einer therapeutischen Impfung erlitt schon vor Jahren Schiffbruch – ein von dem Team um den inzwischen verstorbenen Jonas Salk entwickelter Impfstoff, der aus einem seiner Hüllproteine (gp120) beraubten Virus besteht und tatsächlich eine HIV-Immunantwort induzieren kann, scheint keine klinischen Vorteile zu bringen. Eine Studie wurde im Mai 1999 vorzeitig abgebrochen. Mehr als 2.500 Patienten hatten im Mittel 89 Wochen an dieser Studie teilgenommen, die die zusätzliche Gabe von Remune® zu ART untersuchte. Neben fehlendem klinischen Benefit waren noch nicht einmal Vorteile hinsichtlich CD4-Zellen oder Viruslast nachweisbar (Kahn 2000).

THC, Cannabinoide haben keinen Effekt. Eine randomisierte Studie, in der die Patienten zu einer ART entweder Marihuana rauchten, THC-Tabletten (Dronabinol, Marinol) oder Plazebo erhielten, ergab nach drei Wochen keine Effekte auf Lymphozytensubpopulationen und -funktion (Bredt 2002). Schaden tat THC, das über das Cytochrom p450-System abgebaut wird, allerdings auch nicht, was Viruslast und Plasmaspiegel anging (Abrams 2003). Helfen könnte THC dagegen bei sensibler Polyneuropathie – eine kleine randomisierte Studie zeigte schmerzlindernde Effekte, die denen zugelassener Medikamenten entsprachen (Abrams 2007).

Literatur zu ImmuntherapienAbrams DI, Bebchuk JD, Denning ET, et al. Randomized, open-label study of the impact of two doses of subcutaneous recombinant interleukin-2 on viral burden in patients with HIV-1 infection and CD4+ cell counts of >or=300/mm3: CPCRA 059. J AIDS 2002; 29: 221-31.

Abrams DI, Hilton JF, Leiser RJ, et al. Short-term effects of cannabinoids in patients with HIV-1 infection: a randomized, placebo-controlled clinical trial. Ann Intern Med 2003; 139:258-66.

Abrams DI, Jay CA, Shade SB, et al. Cannabis in painful HIV-associated sensory neuropathy: a randomized placebo-controlled trial. Neurology 2007;68:515-21.

Abrams D, Lévy Y, Losso MH, et al. Interleukin-2 therapy in patients with HIV infection. N Engl J Med 2009, 361:1548-59.

Ahmad A, Ahmad R, Iannello A, et al. IL-15 and HIV infection: lessons for immunotherapy and vaccination. Curr HIV Res 2005, 3:261-70.

Anaya JP, Sias JJ. The use of interleukin-2 in human immunodeficiency virus infection. Pharmacotherapy 2005, 25:86-95.

Angel JB, High K, Rhame F, et al. Phase III study of granulocyte-macrophage colony-stimulating factor in advanced HIV disease: effect on infections, CD4 cell counts and HIV suppression. Leukine/HIV Study Group. AIDS 2000, 14:387-95.

Angel JB, Jacobson MA, Skolnik PR, A multicenter, randomized, double-blind, placebo-controlled trial of recombinant human interleukin-10 in HIV-infected subjects. AIDS 2000; 14:2503-8.

Asmuth DM, Murphy RL, Rosenkranz SL, et al. Safety, tolerability, and mechanisms of antiretroviral activity of pegylated interferon Alfa-2a in HIV-1-monoinfected participants: a phase II clinical trial. J Infect Dis 2010, 201:1686-96.

Bahr GM, De La Tribonniere X, et al. Clinical and immunological effects of a 6 week immunotherapy cycle with murabutide in HIV-1 patients with unsuccessful long-term antiretroviral treatment. J Antimicrob Chemother 2003, 51:1377-88.

Blanckenberg DH, Wood R, Horban A, et al. Evaluation of nevirapine and/or hydroxyurea with nucleoside reverse transcriptase inhibitors in treatment-naive HIV-1-infected subjects. AIDS 2004, 18:631-40.

Bredt BM, Higuera-Alhino D, Shade SB, et al. Short-term effects of cannabinoids on immune phenotype and function in HIV-1-infected patients. J Clin Pharmacol 2002; 42:82S-89S.

Brites C, Gilbert MJ, Pedral-Sampaio D, et al. A randomized, placebo-controlled trial of granulocyte-macrophage colony-stimulating factor and nucleoside analogue therapy in AIDS. J Infect Dis 2000, 182: 1531-5.

Calabrese LH, Lederman MM, Spritzler J, et al. Placebo-controlled trial of Cyclosporin-A in HIV-1 disease: Implications for solid organ transplantation. J Acquir Immune Defic Syndr 2002, 29:359-362.

Carcelain G, Saint-Mezard P, Altes HK, et al. IL-2 therapy and thymic production of naive CD4 T cells in HIV-infected patients with severe CD4 lymphopenia. AIDS 2003;17:841-50.

Chahroudi A, Silvestri G. Interleukin-7 in HIV pathogenesis and therapy. Eur Cytokine Netw 2010, 21:202-7.

Chun TW, Engel D, Mizell SB, et al. Effect of interleukin-2 on the pool of latently infected, resting CD4+ T cells in HIV-1-infected patients receiving HAART. Nat Med 1999, 5:651-5.

Davey RT JR, Murphy RL, Graziano FM, et al. Immunologic and virologic effects of subcutaneous interleukin 2 in combination with ART: A randomized controlled trial. JAMA 2000, 284: 183-9.

Davidson M, Min YI, Holbrook JT, et al. Use of filgrastim as adjuvant therapy in patients with AIDS-related cytomegalovirus retinitis. AIDS 2002, 16: 757-65.

Fagard C, Le Braz M, Gunthard H, et al. A controlled trial of GM-CSF during interruption of HAART. AIDS 2003, 17:1487-92.

Haas DW, Lavelle J, Nadler JP, et al. A randomized trial of interferon alpha therapy for HIV type 1 infection. AIDS Res Hum Retrovir 2000, 16:183-90.

Hatzakis A, Gargalianos P, Kiosses V, et al. Low-dose IFN-alpha monotherapy in treatment-naive individuals with HIV-1 infection: evidence of potent suppression of viral replication. J Interferon Cytokine Res 2001, 21:861-9.

Havlir DV, Gilbert PB, Bennett K, et al. Effects of treatment intensification with hydroxyurea in HIV-infected patients with virologic suppression. AIDS 2001; 15: 1379-88.

Jacobson JM, Lederman MM, Spritzler J, et al. GM CSF induces modest increases in plasma HIV type 1 RNA levels and cd4+ lymphocyte counts in patients with uncontrolled HIV infection. J Infect Dis 2003; 188: 1804-14.

Jacobson MA, Spritzler J, Landay A, et al. A Phase I, placebo-controlled trial of multi-dose recombinant human interleukin-12 in patients with HIV infection. AIDS 2002; 16:1147-54.

Kahn JO, Cherng DW, Mayer K, et al. Evaluation of HIV-1 immunogen, an immunologic modifier, administered to patients infected with HIV having 300 to 549 x 10(6)/L CD4 cell counts: A randomized controlled trial. JAMA 2000, 284:2193-202.

Kovacs JA, Lempicki RA, Sidorov IA, et al. Induction of prolonged survival of CD4+ T lymphocytes by intermittent IL-2 therapy in HIV-infected patients. J Clin Invest 2005; 115: 2139-2148.

Kuritzkes DR, Parenti D, Ward DJ, et al. Filgrastim prevents severe neutropenia and reduces infective morbidity in patients with advanced HIV infection: results of a randomized, multicenter, controlled trial. AIDS 1998, 12:65-74.

Lederman MM, Smeaton L, Smith KY, et al. Cyclosporin A provides no sustained immunologic benefit to persons with chronic HIV-1 infection starting suppressive antiretroviral therapy: results of ACTG 5138. JID 2006, 194:1677-85.

Levy Y, Lacabaratz C, Weiss L, et al. Enhanced T cell recovery in HIV-1-infected adults through IL-7 treatment. J Clin Invest 2009, 119:997-1007.

Lisziewicz J, Foli A, Wainberg M, Lori F. Hydroxyurea in the treatment of HIV infection: clinical efficacy and safety concerns. Drug Saf 2003; 26:605-24.

Lisziewicz J, Rosenberg E, Lieberman J, et al. Control of HIV despite the discontinuation of antiretroviral therapy. NEJM 1999, 340:1683-4.

Lori F, Malykh A, Cara A, et al. Hydroxyurea as an inhibitor of HIV-type 1 replication. Science 1994, 266:801-5.

Margolis D, Mukherjee L, Hogg E, et al. A phase I/II randomized, double-blind, placebo-controlled pilot study of b-D-2,6-diaminopurine dioxolane vs DAPD + mycophenolate mofetil in treatment-experienced Subjects (ACTG 5165). Abstract 517, 13th CROI 2006, Denver.

Margolis DM, Kewn S, Coull JJ, et al. The addition of mycophenolate mofetil to antiretroviral therapy including abacavir is associated with depletion of intracellular deoxyguanosine triphosphate and a decrease in plasma HIV-1 RNA. J AIDS 2002, 31:45-9.

Markowitz M, Vaida F, Hare CB, Boden D, et al. The virologic and immunologic effects of cyclosporine as an adjunct to antiretroviral therapy in patients treated during acute and early HIV-1 Infection. J Infect Dis 2010 Mar 17. [Epub ahead of print]

McComsey GA, Whalen CC, Mawhorter SD, et al. Placebo-controlled trial of prednisone in advanced HIV-1 infection. AIDS 2001;15:321-7.

Mildvan D, Bassiakos Y, Zucker ML, et al. Synergy, activity and tolerability of zidovudine and interferon-alpha in patients with symptomatic HIV-1 infection: ACTG 068. Antivir Ther 1996; 1: 77-88.

Miro J, Lopez-Dieguez M, Plana M, et al. Randomized clinical trial with immune-based therapy in patients with primary hiv-1 infection. Abstract 531, 16th CROI 2009, Montréal.

Mitsuyasu R. Immune therapy: non-HAART management of HIV-infected patients. J Infect Dis 2002, 185 (Suppl 2): S115-22.

Moore RD, Keruly JC, Chaisson RE. Incidence of pancreatitis in HIV-infected patients receiving nucleoside reverse transcriptase inhibitor drugs. AIDS 2001, 15:617-20.

Moore RD, Wong WM, Keruly JC, McArthur JC. Incidence of neuropathy in HIV-infected patients on monotherapy versus those on combination therapy with didanosine, stavudine and hydroxyurea. AIDS 2000, 14: 273-8.

Press N, Kimel G, Harris M, et al. Case series assessing the safety of mycophenolate as part of multidrug rescue treatment regimens. HIV Clin Trials 2002, 3:17-20.

Rizzardi GP, Harari A, Capiluppi B, et al. Treatment of primary HIV-1 infection with cyclosporin A coupled with HAART. J Clin Invest 2002, 109:681-688.

Rutschmann OT, Opravil M, Iten A, et al. A placebo-controlled trial of didanosine plus stavudine, with and without hydroxyurea, for HIV infection. The Swiss HIV Cohort Study. AIDS 1998, 12: F71-7.

Rutschmann OT, Opravil M, Iten A, et al. Didanosine plus stavudine with or without hydroxyurea in HIV-1-infected patients: 1 year follow-up. Antivir Ther 1998, 3 (Suppl 4): 65-7.

Sankatsing SU, Jurriaans S, van Swieten P, et al. Highly active antiretroviral therapy with or without mycophenolate mofetil in treatment-naive HIV-1 patients. AIDS 2004, 18:1925-31.

Sereti I, Dunham RM, Spritzler J, et al. IL-7 administration drives T cell-cycle entry and expansion in HIV-1 infection. Blood 2009, 113:6304-6314.

Sereti I, Imamichi H, Natarajan V, et al. In vivo expansion of CD4+CD45RO−CD25+ T cells expressing foxP3 in IL-2-treated HIV-infected patients. J Clin Invest 2005; 115: 1839-1847.

Sereti I, Lane HC. Immunopathogenesis of HIV: implications for immune-based therapies. Clin Infect Dis 2001, 32: 1738-55.

Skowron G, Stein D, Drusano G, et al. The safety and efficacy of granulocyte-macrophage colony-stimulating factor (Sargramostim) added to indinavir- or ritonavir-based antiretroviral therapy: a randomized double-blind, placebo-controlled trial. J Infect Dis 1999, 180:1064-71.

Stebbing J, Nelson M, Orkin C, et al. A randomized trial to investigate the recycling of stavudine and didanosine with and without hydroxyurea in salvage therapy (RESTART). J Antimicrob Chemother 2004, 53:501-5.

Swindells S, Cohen CJ, Berger DS, et al. Abacavir, efavirenz, didanosine, with or without hydroxyurea, in HIV-infected adults failing initial nucleoside/protease inhibitor-containing regimens. BMC Infect Dis 2005, 5:23.

Tavel JA; INSIGHT STALWART Study Group, et al. Effects of intermittent IL-2 alone or with peri-cycle antiretroviral therapy in early HIV infection: the STALWART study. PLoS One 2010, 5:e9334.

Vento S, Cainelli F, Temesgen Z. Interleukin-2 therapy and CD4+ T cells in HIV-1 infection. Lancet 2006, 367:93-5.

Wallis RS, Kalayjian R, Jacobson JM, et al. A Study of the immunology, virology, and safety of prednisone in hiv-1-infected subjects with CD4 cell counts of 200 to 700 mm-3. J AIDS 2003; 32: 281-6.

Zala C, Salomon H, Ochoa C, et al. Higher rate of toxicity with no increased efficacy when hydroxyurea is added to a regimen of stavudine plus didanosine and nevirapine in primary HIV infection. J Acquir Immune Defic Syndr 2002, 29: 368-73.

Leave a Comment

Filed under 6.3. ART 2011/2012: Hinterm Horizont geht's weiter, Teil 2 Antiretrovirale Therapie (ART)

10. Resistenzen und Tropismus

– Eva Wolf und Patrick Braun –

 

Das virologische Ziel antiretroviralen Therapien ist die Reduktion der Viruslast bis unter die Nachweisgrenze von 20-50 Kopien/ml (DAIG 2010). Virale Blips unter suppressiver ART werden häufig beobachtet und können biologische bzw. statistische Schwankungen darstellen (Nettles 2005, Garcia-Gasco 2008). Bei aktiver Virusreplikation mit wiederholt messbarer Viruslast besteht allerdings die Gefahr einer Resistenzentwicklung – je höher dabei die Viruslast unter Therapie, umso höher ist das Risiko (Delaguerre 2009). Einer retrospektiven Kohortenstudie zufolge steigt das Risiko eines virologischen Versagens ab einer Viruslast zwischen 100 und 300 Kopien/ml (Garcia-Gasco 2008). Ob es sich bei derart niedrigen Virämien unter ART um aktive Virusreplikation handelt, oder um Virus, das durch Immunaktivierung aus latenten Reservoirs freigesetzt wird, ist freilich bislang ungeklärt.

Das rasche Auftreten resistenter Virusvarianten wird insbesondere durch den hohen Turnover von HIV verursacht – täglich entstehen in unbehandelten Patienten ca. 10 Milliarden neuer Viruspartikel (Perelson 1996) – und durch die hohe Fehlerrate bei der Reversen Transkription des Virusgenoms. Zwar stehen auch ohne ART durch die hohe Mutationsrate ständig neue Virusvarianten („Quasispezies“), doch erst in Gegenwart antiretroviraler Medikamente werden resistenzrelevante Mutationen selektiert. Hat ein Virus einmal eine oder mehrere dieser Mutationen aquiriert, die ihm eine verminderte Empfindlichkeit gegenüber bestimmten Substanzen verleihen, hat es unter Therapie gegenüber dem Wildtyp-Virus einen Selektionsvorteil (Drake 1993). Resistente Virusvarianten sind eine wesentliche Ursachen für das virologische Versagen antiretroviraler Therapien. Dank vieler neuer Substanzen gelingt es heute auch häufig trotz langer Vorbehandlung noch wirksame Kombinationen zusammen zustellen, sofern die Resistenzlage berücksichtigt wird.

Neben den Grundlagen beschreibt dieses Kapitel die Methoden der Resistenzbestimmung, die unter ART relevanten Resistenzmutationen und ihre Bedeutung, sowie die Methoden der Tropismusbestimmung und deren Einsatzmöglichkeiten. Die meisten Daten stammen dabei aus Patienten mit Subtyp B-Viren, die in Nordamerika und Zentraleuropa die Mehrheit stellen, jedoch weltweit nur 12 % ausmachen. In den letzten Jahren wurden zunehmend auch non-B-Subtypen untersucht, teilweise mit abweichenden Resistenzpfaden und Mustern (Snoeck 2006).

Methoden der Resistenzbestimmung

Die zwei etablierten Methoden, die Resistenz bzw. Sensitivität von HIV gegenüber antiretroviralen Substanzen zu messen, sind die genotypische und die phänotypische Resistenzbestimmung (Wilson 2003). Zu den von der FDA zugelassenen genotypischen Testsystemen zählen

  • HIV-1 TrueGene™ (Siemens Healthcare Diagnostics)
  • ViroSeq™/ABI Prism®
  • 3100 Genetic Analyzer (Abbott Molecular/Applera Corporation of Applied Biosystems and Celera).

Die herkömmliche Genotypisierung (Populations-Sequenzierung) erfasst in der Regel nur Virusstämme mit einem Anteil von mindestens 20 % an der Gesamtpopulation. Über ultrasensitive Methoden (allelspezifische Realtime-PCR, Single-Genome-Sequencing) mit Detektionsgrenzen von <0,1–5 % verfügen nur wenige Labore. Die klinische Relevanz von minoren Viruspopulationen  ist weiterhin nicht eindeutig belegt, wird aber insbesondere für NNRTI verstärkt diskutiert (Li 2011).

Beispiele für kommerzielle phänotypische Resistenztests sind

  • Antivirogram® von Virco
  • PhenoSense™ von Monogram Biosciences
  • PhenoTecT™ von InPheno
  • Phenoscript™ von VIRalliance.

Nachteile der Phänotypisierung sind der größere zeitliche Aufwand und die hohen Kosten. Während die Gesamtkosten der genotypischen Resistenzbestimmung je nach Testverfahren und Labor zwischen 260 und 400 Euro liegen, ist der Preis für die Phänotypisierung mindestens doppelt so hoch. Ein Problem beider Methoden ist, dass eine Mindestmenge an Viren vorhanden sein muss. Je nach Methode und Labor beträgt die virale Mindestmenge 100 bis 1.000 Kopien/ml, bei niedrigeren Virämien  kann die Resistenzanalyse häufig nicht durchgeführt werden.

In den Tabellen 1 und 2 werden die Vor- und Nachteile der phänotypischen und der genotypischen Resistenzanalyse aufgelistet.

Tabelle 1: Vor- und Nachteile der phänotypischen Resistenzanalyse
Phänotypische Resistenzanalyse
Vorteile Nachteile
  • Direktes Messergebnis
  • Valides Ergebnis auch bei unbekannten Resistenz-Mutationen (z.B. bei  neuen Substanzen)
  • Valides Ergebnis auch bei komplexen Mutationsmustern mit z.B.  Resensitivierungseffekten
  • Detektion von minoren Varianten erst ab 20-30%
  • Klinischer Cut-off nicht für alle Medikamente vorhanden
  • Teuer (keine Kassenleistung in Deutschland)
  • Zeitaufwendig (mehrere Wochen)
  • Keine Angaben zum HIV-1 Subtyp möglich
  • Medikamenten-Kombinationen bzw. Interaktionen zwischen Medikamenten werden nicht in die Interpretation des Phänotyps einbezogen
  • Zwischenschritte auf dem Weg zur Resistenzbildung werden nicht detektiert

Phänotypisierung

Bei einem phänotypischen Resistenztest wird die Empfindlichkeit gegenüber Medikamenten direkt quantifiziert. Die Replikationsfähigkeit von Virusisolaten wird in der Zellkultur unter dem Selektionsdruck der einzelnen antiretroviralen Substanzen – in steigenden Konzentrationen – gemessen und mit der des Wildtyp-Virus verglichen. Die Medikamentenkonzentration, die benötigt wird, um in der Zellkultur die Replikation eines Virusisolats um 50 % zu hemmen, wird IC50 (50 % inhibitory concentration) genannt. Die Empfindlichkeit wird als Quotient aus gemessener IC50 und IC50 eines Wildtyp-Referenzvirus angegeben. Zur Interpretation wird dieser Quotient – auch Resistenzfaktor oder „Fold-change“ genannt – mit einem so genannten Cut-off Wert verglichen. Dieser gibt idealerweise an, bis zu welchem Wert der Resistenzfaktor des HIV-Isolats im Vergleich zum Wildtyp-Virus erhöht sein kann, ohne dass ein klinisch relevanter Wirkverlust besteht (Cheng 1973).

Technischer, biologischer und klinischer Cut-off

Man unterscheidet drei Cut-off-Werte.
Der technische Cut-off ist ein Maß für die messtechnische Variationsbreite.
Der biologische Cut-off ist ein Maß für die natürliche Variationsbreite der Empfindlichkeit der Wildtyp-Virusisolate.
Der klinische Cut-off gibt an, bis zu welcher IC50-Erhöhung (Fold-change) noch mit einer uneingeschränkten Wirksamkeit zu rechnen ist. Er ist somit der klinisch relevante Schwellenwert. Eine vollständige Resistenz gegen ein Medikament entsteht häufig nicht abrupt, sondern entwickelt sich über sukzessive Aminosäureaustausche (insbesondere bei PIs). Meist wird ein oberer und einen unterer klinischer Cut-off angegeben. Am unteren Cut-off ist das virologische Ansprechen bereits leicht vermindert, ab dem oberen Cut-off ist kein oder nur ein geringes virologisches Ansprechen zu erwarten. Für neuere Medikamente fehlen oftmals aus Datenmangel diese Cut-offs, in diesen Fällen orientiert man sich am biologischen Cut-off.

Bei der phänotypischen Resistenzanalyse werden Mutationen, die selbst keine Resistenz bewirken, aber Hinweise auf eine übertragene, sich entwickelnde bzw. zurückentwickelnde Resistenz liefern, nicht berücksichtigt.

Genotypisierung

Grundlagen und Nomenklatur

Das Erbmaterial des HIV besteht aus je 2 RNA (Ribonukleinsäure)-Strängen, die die genetischen Informationen des Virus beinhalten. Innerhalb der Nukleotidsequenzen des HIV-Genoms kodieren je drei Nukleotide, auch Codons genannt, für eine Aminosäure in der Proteinsequenz. Resistenzmutationen werden mit einer Zahl, die die Position des jeweiligen Codons innerhalb des Gens angibt, und zwei Buchstaben beschrieben. Der Buchstabe vor der Zahl bezeichnet die Aminosäure, für die dieses Codon im Wildtyp-Virus an dieser Position kodiert. Der Buchstabe nach der Zahl bezeichnet die Aminosäure, die durch das mutierte Codon gebildet wird. Eine Veränderung der Nukleotidfolge eines Codons, eine Mutation, kann den Einbau einer anderen Aminosäure zur Konsequenz haben, was die Proteinfunktion beeinträchtigen und zu einem Wirkverlust entsprechender antiretroviraler Substanzen führen kann. Bei der M184V zum Beispiel betrifft die entsprechende Mutation das Codon 184 des RT-Gens und führt zu einem Austausch der Aminosäure Methionin (M) gegen Valin (V) im RT-Enzym. Diese Mutation bewirkt, dass das Virus resistent gegen 3TC und FTC wird.

Es gibt Mutationen, die sogenannten „stillen Mutationen“, die keinen Aminosäureaustausch zur Folge haben. Klinisch relevant sind nur die Mutationen, die einen Aminosäureaustausch bewirken, der auch zu einer Veränderung der Proteinstruktur führt. Diese Veränderung kann beispielweise auch zur Resistenzbildung beitragen. Weiterhin gibt es noch „letale“ Mutationen, die bewirken, dass defekte Proteinstrukturen entstehen und der Vermehrungszyklus des Virus unterbrochen wird.

Mit den genotypischen Verfahren werden Resistenz-assoziierte Mutationen analysiert. Die Mutationen werden über die direkte Sequenzierung des amplifizierten HIV-Genoms oder durch spezifische Hybridisierungsverfahren mit Wildtyp- bzw. mutanten Oligonukleotiden nachgewiesen. Für therapeutische Entscheidungen relevant sind die Sequenzierung der HIV-pol-Region, die für die viralen Enzyme Protease, Reverse Transkriptase und Integrase codiert, und der env-Region, die für die Hüllproteine gp41 und gp120 codiert. Untersuchungen zeigen, dass auch andere Genbereiche wie die RNAse H und der gag-Bereich resistenz-relevant sind. Diese werden hier nicht weiter beschrieben, da sie hauptsächlich im Rahmen von Forschungsprojekten und nicht routinemäßig analysiert werden.

Basis für die Interpretation genotypischer Resistenzmuster ist die Korrelation zwischen Genotyp, Phänotyp und klinischem Ansprechen. Entsprechende Daten kommen aus In-vitro-Selektionsstudien, klinischen Studien, klinischen Beobachtungen und zahlreichen Doppelmessungen, bei denen Mutationen auf ihre phänotypische Resistenz untersucht wurden.

Tabelle 2. Vor- und Nachteile der genotypischen Resistenzanalyse.

Genotypische Resistenzanalyse

Vorteile

Nachteile

  • Schnell durchführbar (Tage)
  • Weit verbreitet (kein S3 Labor)
  • Auflistung aller Veränderungen in der Nukleotidsequenz
  • Detektion von Aminosäuren, die einen Hinweis auf eine vorhandene oder sich zurückentwickelnden Resistenz liefern
  • Angabe zum HIV-1 Subtyp
  • Kassenleistung (Protease, RT)
  • Indirekte Messung
  • Detektion von minoren Varianten ab 20%
  • Komplexe Mutationsmuster sind oft schwierig interpretierbar
  • Unbekannte Mutationen werden bei der Interpretation nicht berücksichtigt
  • Interpretationssysteme müssen kontinuierlich aktualisiert werden

Regelbasierte Interpretationssysteme

Häufig basieren genotypische Interpretationssysteme auf Regeln, die von Experten aus Literaturdaten abgeleitet und ein- bis zweimal im Jahr überarbeitet werden (z. B. HIV-GRADE). Die wichtigsten Interpretationssysteme sind in der Tabelle 3 aufgelistet. Die kommerziellen Anbieter von Resistenztests haben meist Interpretations­richtlinien in ihre Systeme integriert (z. B. virco®Type HIV-1 von Virco oder GuideLines© (TruGene™) von Siemens Healthcare Diagnostics.

Datenbasierte Interpretationssysteme und virtueller Phänotyp

Im Gegensatz zu den von Expertenteams erstellten, wissensbasierten Regelsystemen hat man sich bei den datenbasierten Interpretationssystemen geno2pheno oder vircoType™ dem Problem mathematisch genähert – mit dem Ziel, aus einer genetischen Information den Phänotyp bzw. das virologische Ansprechen vorhersagen zu können. Bei diesem „virtuellen Phänotyp“ wird dem individuellen genotypischen Resistenzmuster ein Phänotyp zugeordnet, ohne dass eine Phänotypisierung durchgeführt wurde. Grundlage hierfür sind Datenbanken mit den Ergebnissen paarweise durchgeführter Geno- und Phänotypisierungen.

Das frei verfügbare Resistenzinterpretationssystem geno2pheno basiert auf der Verwendung maschinell lernender Techniken, wie z. B. Support-Vektormaschinen (Beerenwinkel 2003). Es lernt aus den gekoppelten Geno- und Phänotypen, erkennt Gesetzmäßigkeiten und kann so den (virtuellen) Phänotyp ableiten.

Grundlage der vircoType-Interpretation ist ein multiples, lineares Regressionsmodell, das auf einen Datensatz von über 53.000 Genotyp/Phänotyp-Paaren angewendet wird: Für jedes Medikament wird die IC50-Erhöhung bzw. der Fold-change-Wert als Funktion der möglichen Mutationen und Mutationspaare dargestellt. Durch die Berücksichtigung von Mutationspaaren werden Interaktionen zwischen den einzelnen Mutationen in die Resistenzbeurteilung einbezogen. Die Regressionsanalyse ordnet den jeweiligen Mutationen bzw. Mutationspaaren medikamentenspezifische Gewichtungsfaktoren zu. Synergistische Effekte durch das gleichzeitige Auftreten zweier Mutationen werden durch einen positiven Gewichtungsfaktor, antagonistische oder re-sensitivierende Effekte durch einen negativen Gewichtungsfaktor abgebildet.

Tabelle 3.  Resistenzinterpretationssysteme im Überblick
Interpretationssystem (letztes Update) Interpretation

Freier Zugang

Internet:http://www.

HIV-GRADE (07/2010), Deutschland

Regelbasiert

ja

hiv-grade.de

z.B.  http://www.hiv-grade.de/grade/deployed/grade.pl?program=hivalg

Rega V8.0.2 (HIV-1&2) (06/2009), Belgien

Regelbasiert

ja

http://regaweb.med.kuleuven.be/software/rega_algorithm/

HIVdb Version 6.0.9 (08/2010), USA

Regelbasiert

ja

hivdb.stanford.edu/

z.B. http://sierra2.stanford.edu/ sierra/servlet/JSierra

ANRS (HIV1&2) V19 (07/2010), Frankreich

Regelbasiert

ja

hivfrenchresistance.org/

EuResist

EuResist Network GEIE

Datenbasiert

ja

euresist.org http://engine.euresist.org/data_analysis/viral_sequence/new

MGRM GeneSeq 

(Monogram Bioscience)

Regel- und datenbasiert

nein

monogramhiv.com

geno2pheno

Deutschland

Datenbasiert (Virtueller

Phänotyp)

ja

genafor.org ODER :

http://www.geno2pheno.org/

Virco®Type HIV-1 (Virco)

Datenbasiert (Virtueller

Phänotyp)

nein

www.vircolab.com

Methoden der Tropismusbestimmung

Um in die Zielzelle eindringen zu können, braucht HIV neben dem CD4-Rezeptor sogenannte Korezeptoren. Die zwei wichtigsten sind die Chemokinrezeptoren CCR5 und CXCR4. Entsprechend der Korezeptornutzung („Tropismus“) werden die Viren in CCR5- bzw. R5-trope und CXCR4- bzw. X4-trope Viren unterteilt. Virusstämme, die beide Rezeptoren nutzen können, nennt man „dual-trop“. Da diese im Tropismus-Test nicht von einer Mischung aus R5- und X4-tropen Viren zu unterscheiden sind, wird diese Gruppe als „dual/mixed“ (D/M)-trop bezeichnet.

Analog zur Resistenzanalyse kann die Tropismusbestimmung genotypisch oder phänotypisch durchgeführt werden. Trofile™ von Monogram ist, bedingt durch die Verwendung in den Zulassungsstudien von Maraviroc und Vicriviroc, der bekannteste phänotypische Tropismustest. Während der ursprüngliche Standardtest eine Sensitivitätsgrenze von 5 bis 10 % hatte, können mit dem sogenannten ESTA (enhanced sensitivity TrofileTM Assay) minore Viruspopulationen detektiert werden, die weniger als 1 % der Gesamtpopulation ausmachen. Ein anderer phänotypischer Test ist Phenoscript® ENV (EuroFins/VIRalliance). Die Übereinstimmung zwischen beiden Assays lag in einer Untersuchung bei 85 % (Skrabal 2007).

Bei der genotypischen Tropismusanalyse wird im Gegensatz zur phänotypischen Methode lediglich die für die Bindung entscheidende V3-Region des gp120-Gens sequenziert. Dieser Genabschnitt definiert den viralen Tropismus des Virus. Basierend auf der analysierten Nukleotid- bzw. Aminosäuresequenz erfolgt die Tropismusvorhersage unter Nutzung spezieller bioinformatischer Werkzeuge. Hierzu werden Analysemethoden, wie die Charge Rule, Support-Vektormaschinen (SVM) oder Decision Trees verwendet (Garrido 2008, Skrabal 2007, Obermeier 2008). Frei verfügbare Software für die genotypische Tropismusvorhersage findet sich unter den folgenden Web-Adressen:

Die Interpretation mit dem Korezeptor-Tool von geno2pheno ist weit verbreitet, zeigt gute Übereinstimmung mit ESTA und wird in Deutschland primär eingesetzt (Prosperi 2010). Im Gegensatz zur phänotypischen Bestimmung kann die genotypischen Vorhersage nicht zwischen X4-tropen und dual- bzw. misch-tropen Populationen differenzieren. Das mit geno2pheno ermittelte Ergebnis ist die sogenannte Falsch-Positivrate (FPR), die die Wahrscheinlichkeit angibt, dass eine X4-Vorhersage falsch ist. Eine FPR von 0,1 % bedeutet sehr sicher einen X4-Tropismus, eine FPR von 90 % mit hoher Sicherheit einen R5-Tropismus, da das X4-Ergebnis mit 90%iger Wahrscheinlichkeit falsch wäre. Aktuell werden in den deutschen Leitlinien die Grenzen wie folgt gesetzt: Eine FPR von ≤ 12 % entspricht einem X4-tropen und eine FPR von ≥ 20 % einem R5-tropen Virusstamm. FPR-Werte zwischen 12 % und 20 % sollten möglichst mittels eines phänotypischen Tropismustests abgeklärt werden. Für die Testung aus proviraler DNA, die bei supprimierter Viruslast zum Einsatz kommt (s.u.), wird eine FPR-Grenze von 20 % empfohlen. Es wird zur Zeit diskutiert, den unteren Schwellenwert von 12 % auf 5 % herabzusetzen, womit der Graubereich zwischen 5 % und 20 % liegen würde. In den europäischen Richtlinien wurde der Graubereich des mit geno2pheno berechneten Ergebnisses zwischen 10 % und 20 % festgelegt (Vanderkerckhove 2010).

Bei der genotypischen Tropismustestung unterscheidet man wie bei der Resistenztestung die Populations-Sequenzierung, bei der X4-trope Viren erst ab einem Anteil von 20 % an der Gesamt-Viruspopulation detektiert werden, und ultra-sensitive Methoden wie die Ultradeep-Sequenzierung (UDS) mit Nachweisgrenzen von wenigen Prozent. In einer Studie zu MVC+ATV/r bei ART-naiven Patienten wurde der ESTA zur Tropismusbestimmung verwendet. Alle Proben wurden sowohl mit UDS als auch mit der gängigen Populationssequenzierung (mit einer FPR von 5,75 %) reanalysiert. Mit dem ESTA wurden in 123 Fällen (69 %) R5-trope Viren nachgewiesen, in 39 Fällen (22 %) dual/misch-trope Viren. In 16 Fällen (9 %) konnte kein Ergebnis generiert werden. Die Populationssequenzierung fand in 82 % R5-trope Viren, in 15 % X4-trope Viren. In 3 % konnte kein Ergebnis erzielt werden.  Die Korrelation für R5-tropes Virus lag für UDS und Populationssequenzierung bei 95 %. Von den Proben, die mit der Populationssequenzierung als R5-trop eingestuft wurden, hatten nur 3 % (3 von 114) einen Anteil an X4-tropen Viren von mehr als 2 %. Für alle fehlgeschlagenen ESTA-Bestimmungen konnte mit der Populationssequenzierung der Tropismus bestimmt werden (Portsmouth 2010a).

Der Vorteil der genotypischen Testverfahren liegt, wie bei der Resistenzanalyse, in der breiten Verfügbarkeit und dem schnellen Ergebnis. Analysen, in denen sowohl geno- als auch phänotypische Tropismusergebnisse mit dem virologischen Ansprechen korreliert wurden, zeigten, dass die beiden Methoden als gleichwertig anzusehen sind (Braun 2009, Harrigan 2009, s. auch Kapitel CCR5 Antagonisten). Dies entspricht auch den europäischen Empfehlungen (Vanderkerckhove 2010). Ein weiterer Vorteil liegt darin, dass der Test auch bei sehr niedriger oder nicht nachweisbarer Viruslast aus proviraler DNA möglich ist. Dies kann beispielsweise für Patienten mit Nebenwirkungen bedeutsam sein. Es besteht eine gute Korrelation zwischen den TrofileTM-Ergebnissen und genotypischen Tropismusvorhersagen aus proviraler DNA (Obermeier 2008). Die provirale Tropismusbestimmung und die oben genannten Argumente begründen die Aufnahme der genotypischen Korezeptor-Tropismusbestimmung in die Leitlinien der Deutschen AIDS Gesellschaft (DAIG 2009) für Diagnostik und Therapie der HIV-Infektion. Der kommerzielle TrofileTM-Test, der seit kurzem auch für provirale DNA angeboten wird, wird entsprechend den Richtlinien in Deutschland meist nur bei unklaren Ergebnissen als Bestätigungstest eingesetzt. In den Europäischen Guidelines wird sowohl die genotypische als auch die phänotypische Tropismusbestimmung berücksichtigt (Vandekerckhove 2010).

Tabelle 4. Gegenüberstellung der Vor- (+) und Nachteile (-) von genotypischer und phänotypischer Tropismusanalyse, exemplarisch anhand von geno2pheno und Trofile (ESTA).

ESTATM

phänotypische Analyse anhand

des  vollständigen gp160;

Ergebnis in Zellkultur bestimmt

Geno2pheno

genotypische Analyse auf Basis

der V3-Sequenz (Datenbank);

Ergebnis berechnet/vorhergesagt

+ An klinischen Daten validiert

+  An klinischen Daten validiert

+ Unterscheidung zwischen R5-, X4- und Dual/Misch-tropen HIV

+  Ergebnis basierend auf dem Ausschluss von X4-tropen Viren

– Monopol (USA)

+  Einsatz  weit verbreitet in molekularbiologischen Laboren

– kommerziell / teuer

+  frei verfügbar / kostengünstiger

– Ergebnisdauer: 3 – 4 Wochen

+  Ergebnisdauer: ca. 5 Arbeitstage

– aus RNA: Viruslast von ≥500 – 1.000 Kopien/ml erforderlich

+ aus RNA: Viruslast von ≥500 – 1.000 Kopien/ml erforderlich

+  Jüngst auch bei niedriger/nicht nachweisbarer  Viruslast aus proviraler DNA möglich

+ Auch bei niedriger/nicht nachweisbarer  Viruslast aus proviraler DNA möglich

–  Sensitivitätsgrenze: < 1%

–  Sensitivitätsgrenze: ca. 20%

Resistenzmechanismen

NRTIs werden als Prodrugs verabreicht und erst als Triphosphate wirksam. Bei Nukleotidanaloga sind zwei, bei Nukleosidanaloga drei Phosphorylierungsschritte nötig. Phosphorylierte NRTIs werden kompetitiv zu den natürlichen dNTPs (Desoxynukleotid-Triphosphate) in die provirale DNA eingebaut. Sie hemmen deren weitere Synthese durch das Enzym Reverse Transkriptase (RT), blockieren so die Verlängerung der proviralen DNA und führen zum Kettenabbruch. Zu unterscheiden sind zwei biochemische Resistenz-Mechanismen (De Mendoza 2002):

Die sterische Inhibition wird durch Mutationen vermittelt, die es dem RT-Enzym ermöglichen, strukturelle Unterschiede zwischen NRTIs und dNTPs zu erkennen. Der Einbau von NRTIs wird zugunsten der dNTPs verhindert, so zum Beispiel bei den Mutationen M184V, Q151M, L74V und K65R (Naeger 2001, Clavel 2004).

Bei der ATP (Adenosin-Triphosphat)- oder Pyrophosphat-vermittelten Phosphorylyse werden bereits eingebaute NRTIs aus der wachsenden DNA-Kette wieder freigesetzt. Dies ist der Fall bei den Thymidinanaloga-Mutationen M41L, D67N, K70R, L210W, T215Y und K219Q (Meyer 2000). Diese verursachen Kreuzresistenzen zwischen den NRTIs, die jedoch unterschiedlich stark ausgeprägt. Die Mutation K65R wirkt der Exzision der bereits eingebauten NRTIs entgegen. Das Gleichgewicht beider Mechanismen – reduzierter Einbau durch K65R einerseits und Hemmung der Exzision durch K65R andererseits – führt bei den meisten NRTIs zu einer verminderten, bei AZT jedoch zu einer erhöhten Empfindlichkeit (White 2005) und damit zu einer Resensitivierung.

NNRTIs hemmen ebenfalls die RT, unterscheiden sich jedoch chemisch von den NRTIs. Als kleine Moleküle lagern sie an eine hydrophobe Stelle in der Nähe des katalytischen Zentrums der RT an. Mutationen an der NNRTI-Bindungsstelle der RT verringern die Affinität der Inhibitoren und führen zu einem Wirkverlust. Während bei NNRTIs der ersten Generation oft eine Mutation für eine vollständige Resistenz reicht, ist das Mutationsmuster bei den weniger starren NNRTIs der zweiten Generation komplexer (Vingerhoets 2008, Molina 2008).

PIs verhindern die Spaltung des viralen gag-pol-Vorläuferproteins durch das Enzym HIV-Protease. Dadurch werden Viruspartikel produziert, die nicht infektiös sind. PI-Resistenzen entwickeln sich in der Regel langsam, da mehrere Mutationen akkumulieren müssen. Es werden Haupt- und Nebenmutationen unterschieden, die jedoch nur eine grobe Einstufung der Resistenzlage erlauben.

Hauptmutationen („major mutations“) verursachen phänotypisch Resistenzen. Zu ihnen zählen sowohl Mutationen, die unter dem Selektionsdruck eines Medikaments als erste auftreten, als auch Mutationen (häufig auch als primäre Mutationen bezeichnet), die sich im aktiven Zentrum der HIV-Protease befinden und die Bindungsfähigkeit des PIs an dieses Enzym reduzieren. Teilweise führen diese Mutationen auch zu einem Aktivitätsverlust der Protease.

Nebenmutationen („minor mutations“, auch als sekundäre Mutationen bezeichnet) liegen außerhalb des aktiven Zentrums und treten in der Regel erst nach den Hauptmutationen auf. Bisweilen können sie den durch die Hauptmutationen bedingten Verlust an viraler Fitness kompensieren (Nijhuis 1999, Johnson 2007b).

Mutationen an den Positionen 20, 36, 63, und 77 sind polymorph und kommen auch ohne Selektionsdruck häufig vor bzw. entsprechen z.T. den Konsensus-Aminosäuren einiger non-B-Subtypen. Ihr Beitrag zur Resistenz ist nur gering und hängt vom Vorhandensein anderer Mutationen ab.

Tabelle 5. Resistenzmutationen unter PIs
Hauptmutationen
23I, L24I, D30N, V32I, 33F, M46I/L, I47V/A, G48V/M, I50V/L, 53L, I54V/A/M/L/T/S, L76V, V82A/C/F/L/M/S/T, I84V/A/C, N88D/S, L90M
Nebenmutationen (Auswahl)
L10FIRVY, V11I, L24F, L33I, E35G, K43T, M46V, F53L/Y, Q58E, A71V/T/I/L, G73C/A/T/S, T74P/S, L89V
(HIV Drug Resistance Database, Sequence Analyses Program, version 6.0.9, 2010-08-24; http://hivdb.stanford.edu/pages/documentPage/PI_mutationClassification.html)

Entry-Inhibitoren verhindern, dass das Virus in die Zielzelle eindringen kann. Damit HIV in die Zielzelle gelangen kann, bindet es mit seinem Oberflächenprotein gp120 an den CD4-Rezeptor, was zu Konformationsänderungen im gp120 führt und die Bindung des V3-Loops von gp120 mit den Chemokin-Rezeptoren der Zielzelle, CCR5 bzw. CXCR4, ermöglicht. Durch Interaktionen der beiden Heptad Repeat Regionen HR1 und HR2 und des viralen Transmembranproteins gp41 erfolgt eine Konformationsänderung in gp41, die schließlich die Insertion von gp41 in die Zellmembran ermöglicht. CCR5-Antagonisten binden an den CCR5-Korezeptor, verhindern so die Interaktion mit dem viralen Oberflächenprotein gp120 und damit den Eintritt in die Zelle. Fusionsinhibitoren verhindern die Fusion der viralen Membran mit der Zellmembran. Der Fusionsinhibitor T-20 ist ein synthetisches Peptid, das der C-terminalen HR2-Domäne von gp41 entspricht und kompetitiv zu HR2 mit HR1 interagiert. Dadurch wird die nötige Konformationsänderung in gp41 und so die Fusion von HIV mit der Zelle verhindert. Bereits ein einzelner Aminosäure-Austausch in HR1 kann die Wirksamkeit von T-20 deutlich einschränken.

Integrase-Inhibitoren verhindern die Integration des viralen Erbgutes, die provirale DNA nach der Transkription, in das Erbgut der Wirtszellen. Zunächst bindet die virale Integrase im Zytoplasma an die 3’Enden der proviralen DNA und bildet den Präintegrationskomplex. Anschließend schneidet die Integrase ein Dinukleotid an beiden Enden der viralen DNA heraus, wodurch neue 3’-Hydroxylgruppen entstehen (3’-Prozessierung). Im Zellkern kommt es zum Strangtransfer, bei dem die Integrase die Endabschnitte der viralen DNA mit der zellulären DNA verbindet. Integrase-Inhibitoren, wie Raltegravir oder Elvitegravir, verhindern den Strangtransfer. Sie binden an die Integrase und wandern zusammen mit dem Präintegrationskomplex in den Zellkern. In ihrer Gegenwart können die Integrase-Moleküle die Integration der proviralen DNA in die zelluläre DNA nicht mehr katalysieren. Resistenz entsteht durch die Selektion bestimmter (Schlüssel-) Mutationen im Integrase-Gen. Sowohl der Strangtransfer als auch die 3’ Prozessierung können dadurch betroffen sein. Es wurden bereits einige unterschiedliche Resistenzprofile und -pfade beschrieben. Die Akkumulation zusätzlicher Mutationen führt zu einer weiteren Abnahme der Empfindlichkeit (Fransen 2008, Miller 2008).

Transmission resistenter HIV-Stämme

Die Prävalenz der bereits vor Therapiebeginn vorhandenen Resistenzmutationen variiert regional erheblich. Prävalenzen von über 20 % wurden vorübergehend in einigen US-Städten mit einer großen homosexuellen Population und mit langjährigem Zugang zu antiretroviralen Therapien beobachtet. Ältere Arbeiten zur Inzidenz und Prävalenz sind allerdings mit Vorsicht zu bewerten, da nicht jeder Polymorphismus resistenz-assoziiert ist. In 2007 wurden die als Primärresistenz geltenden Mutationen von einer internationalen Forschungsgruppe definiert. Durch die Vereinheitlichung dieser zuletzt in 2009 aktualisierten Mutationsliste können internationale Daten zur Primärresistenz verglichen werden (Bennett 2009).

Tabelle 6. Resistenzprävalenz bei unbehandelten Patienten (Auswahl).
Referenz

Region

Zeitraum

Kollektiv

N

Primär-Resistenz

Bartmeyer 2010

Deutschland

1996-2007

Serokonverter

1298

12,4 %

De Mendoza 2005

Spanien

1997-2004

Serokonverter

198

12,1 %

Recordon 2007

Frankreich

1996-2005

Serokonverter

194

15,7 %

Little 2002

USA

1995-2000

Serokonverter

377

22,7 %

Chaix 2007

Frankreich

2005-2006

Serokonverter + Chronisch Infizierte

289

10,4 %

Frentz 2011

Europa

2006-2007

Neu Diagnostizierte

1630

9,7 %

Truong 2006

San Francisco

2004

Neu Diagnostizierte

129

13,2 %

Jayaraman 2006

Kanada

1999-2003

Neu Diagnostizierte

768

10,2 %

Nkengafac 2007

Kamerun

2005-2006

Neu Diagnostizierte

180

7,8 %

Oette 2008

D (NRW)

2001-2004

Chronisch Infizierte

1373

14 %

Cane 2005

Großbritannien

1996-2005

Chronisch Infizierte

2357

14,2 %

Die deutsche Serokonverterstudie des RKI fand zwischen 1996 und 2007 in 12,4 % (158/1.276) partiell resistente Viren. Obwohl der Anteil an Isolaten mit einer Primärresistenz über die Beobachtungszeit stabil blieb, nahm der Anteil NRTI–resistenten Viruspopulationen (7,5 %) ab, während NNRTI-Resistenzen (3,5 %) tendentiell zunahmen (Bartmeyer 2010). Bei chronisch infizierten Patienten lag im Zeitraum 2001-2007 der Primärresistenzanteil bei 14 % (Oette 2008).

Europaweite Prävalenzdaten aus den Jahren 2006 bis 2007 kommen aus dem SPREAD-Programm (Strategy to Control Spread of HIV Drug Resistance). Bei 9,7 % der 2.687 neu diagnostizierten HIV-Patienten wurden Viren mit mindestens einer Resistenzmutation gefunden. Der Anteil an Isolaten mit NRTI-, NNRTI- und PI-Resistenz betrug 5,7 %, 3,9 % und 1,7 %. Bei weniger als 1 % der Patienten lagen Resistenzen gegen zwei Medikamentenklassen vor (Frentz 2011).

Ultrasensitive Methoden wie die allelspezifische Realtime-PCR (AS-PCR) oder die Ultradeep-Sequenzierung erkennen meist mehr Resistenzmutationen als herkömmliche Sequenzierungsverfahren. In einer Schweizer Studie detektierte eine AS-PCR bei 13 von 74 Patienten (18 %) mit vermeintlichem Wildtyp-Virus noch M184V- und/oder K103N-Quasispezies als minore Varianten (Metzner 2007a). In einer Studie aus Atlanta wurden so bei 33/205 (16 %) noch Resistenzmutationen nachgewiesen (Johnson 2007a). In einer englischen Studie an 165 anonymisierten Proben aus den Jahren 2003-2006 ergab der Standard-Assay in 13 % der Proben eine Resistenz, die für K103N, Y181C und M184V sensitiveren Verfahren dagegen in 19 %. Durch die empfindlichere Nachweismethode stieg insbesondere der Anteil an M184V-Isolaten von 0,6 % auf 8 %.

Das Vorkommen von Primärresistenzen ist bei therapienaiven Patienten mit frischer bzw. mit chronischer HIV-Infektion mit 19 % bzw. 20 % nahezu gleich (Buckton 2010). Dies bedeutet, dass übertragene Primärresistenzen über lange Zeit persistieren (Pao 2004). In einer spanischen Studie kam es nach einer Beobachtungszeit von im Median 41 Monaten nur bei 3 von 10 Serokonvertern mit Primärresistenzmutationen zur (partiellen) Rückmutation (De Mendoza 2005b). Im Gegensatz zu K103N oder M184V werden Isolate mit der Mutation K65R seltener übertragen. Sie wurden nur bei 4/194 Patienten (2 %) als minore Virusvariante zu Therapiebeginn detektiert (Metzner 2007b).

Primär übertragene Resistenzmutationen können die Therapieoptionen einschränken und das virologische Ansprechen mindern (Little 2002, Wittkop 2010)). Dies wurde auch durch eine Metaanalyse (10 Studien, 985 Patienten) für minore NNRTI-resistente Virusvarianten bestätigt (Li 2011). Wird jedoch die Resistenzlage berücksichtigt, ist ein primärer Therapieerfolg häufig möglich (Oette 2006, Reuter 2008).

Anfang 2005 erregte ein New Yorker Patient mit rascher klinischer Progression großes Aufsehen. Er hatte sich mit einem multiresistenten Virus, dessen Replikationskapazität der eines Wildtyp-Virus glich, angesteckt. Therapieoptionen waren stark eingeschränkt. Dieser Fall verdeutlichte die möglichen klinischen Konsequenzen von Primärresistenzen (Markowitz 2005). In 2010 wurde erstmalig von der Transmission eines gegen Integrase-Inhibitoren resistenten Virus berichtet. Das Virus wies zusätzlich NRTI-, NNRTI- und PI- Resistenzmutationen auf. Der Autor empfiehlt bei therapienaiven Patienten mit multiresistenten Viren zusätzlich das Integrase-Gen auf Resistenzmutationen hin zu analysieren (Young 2010).

Klinische Studien und Leitlinien

Die klinische Relevanz genotypischer Resistenztests vor Therapieumstellung wurde in prospektiven, kontrollierten Studien wie VIRADAPT, CPCRA 046 oder Havana belegt (Durant 1999, Baxter 2000, Tural 2002). Dies gilt auch für die phänotypische Resistenztestung (Studie VIRA 3001, Cohen 2002). Patienten, deren Ärzte vor der ART-Umstellung Informationen über Resistenzen besaßen, erzielten deutlichere Viruslastsenkungen als Patienten, deren ART ohne Wissen um die Resistenzlage geändert wurde – dies zu einem Zeitpunkt, zu dem es noch vergleichsweise wenig Therapieoptionen bzw. -alternativen gab. Seither sind diverse neue Medikamente hinzugekommen, die auch für den Einsatz bei bestehenden Resistenzmutationen entwickelt wurden. Mit den Zweit-Generations-NNRTIs und -PIs, die abhängig vom Resistenzprofil unterschiedliche Wirksamkeit zeigen, hat auch die klinische Relevanz der Resistenzbestimmung vor Therapieumstellung zugenommen.

Aus ethischen Gründen werden aktuell keine Studien mehr angelegt, die den Nutzen einer Resistenzanalyse untersuchen: Eine Resistenzanalyse vor ART-Einleitung gehört zur Routinediagnostik in Regionen, in denen die Übertragung resistenter HI-Viren beobachtet wird. Im Rahmen einer groß angelegten retrospektiven Analyse des Eurocoord-Chain Projektes wurde untersucht, ob übertragene HIV-Resistenzen den Erfolg der initialen ART beeinflussten. Insgesamt wurde bei 10.458 Patienten, die ihre ART 1998 begonnen hatten, Blutproben vor Beginn der ART untersucht. Unterschieden wurden Patienten ohne resistente Viren, Patienten mit resistenten Viren, die aber eine vollständig wirksame ART erhalten hatten sowie Patienten, bei denen mindestens ein Medikament der verordneten ART nicht mehr vollständig wirksam war. Es zeigte sich, dass die Berücksichtigung der Resistenzen essentiell für einen dauerhaften Therapieerfolg war. Patienten, die nicht „resistenz-gerecht“ therapiert wurden, hatten ein 2,6-fach höheres Risiko eines Therapieversagens (Wittkop 2010).

Die Resistenztestung ist fester Bestandteil der europäischen und deutschen Leitlinien, sowohl bei unbehandelten als auch bei behandelten Patienten. Die Indikation nach den Deutsch-Österreichischen Leitlinien ist in Tabelle 7 zusammengefasst.

Tabelle 7: Empfehlungen zur Resistenztestung, Deutsch-Österreich. Leitlinien (DAIG 2010)
Empfehlung zur Resistenztestung Evidenz-Level

Kommentare

Bisher unbehandelte Patienten

Primäre/kürzliche Infektion

empfohlen

A II

Meldung an das Serokonverterregister des RKI

Chronische Infektion, vor ART-Beginn

empfohlen

A II

Wenn nicht schon vorher erfolgt

Behandelte Patienten

Nach erstem Therapieversagen

generell empfohlen vor ART-Wechsel

A II

Abklärung der Ursachen des Therapieversagens!

Mit umfangreicher ART-Vorbehandlung

generell empfohlen vor ART-Wechsel

A II

Abklärung der Ursachen des Therapieversagens!

In oder nach einer Therapiepause

u.U. sinnvoll, aber nicht zwingend

D III

Feststellung einer Reversion zum Wildtyp

Interpretation genotypischer Resistenzprofile

Die hier zitierten Algorithmen sind nur richtungsweisend. Auf Basis dieser Daten alleine sollte keine Therapieentscheidung getroffen werden. Empfohlen werden eines der in Tabelle 3 genannten Resistenzinterpretationssysteme, wie zum Beispiel http://www.HIV-Grade.de.

NRTIs

Bei einigen NRTIs wie 3TC oder FTC verursacht bereits eine einzige Mutation eine hochgradige Resistenz. Deshalb sollten diese Substanzen nur in effektiven Kombinationen eingesetzt werden. Die für 3TC/FTC spezifische Mutation M184V führt jedoch auch gleichzeitig zu einem Verlust der viralen Replikationskapazität um ca. 40-60 % (Miller 2003, Deval 2004). In einer frühen Studie zur 3TC-Monotherapie lag die Viruslast trotz frühem Auftreten der Mutation M184V nach 52 Wochen immer noch 0,5 Logstufen unter der Ausgangsviruslast (Eron 1995). Im Vergleich zu Therapiepausen scheint eine 3TC-Monotherapie die virologische und immunologische Verschlechterung hinauszuzögern (Castagna 2006). FTC und 3TC haben ein nahezu gleiches geno- und phänotypisches Resistenzprofil – ein Therapieversagen ist mit der Mutation M184V verbunden (Borroto-Esoda 2007). Oft wird vorher noch die Mutation M184I detektiert, die dann schnell durch M184V verdrängt wird (Schuurmann 1995). Abhängig von der Begleitmedikation wird M184V häufiger unter 3TC als unter FTC, insbesondere in Kombination mit TDF, nachgewiesen (Svicher 2010). In der prospektiven HEAT-Studie war M184V allerdings unter FTC häufiger (Smith 2008).

T69I ist eine seltene Mutation, die in 0,5 % der vorbehandelten und 0,2 % der ART-naiven Patienten nachgewiesen wird. Diese Mutation bewirkt eine starke Resistenz gegen 3TC, FTC und eventuell auch gegen TDF (Svicher 2010).

Zu den Thymidinanaloga-Mutationen, meist kurz „TAMs“ genannt, zählen die Mutationen M41L, D67N, K70R, L210W, T215Y/F und K219Q/E, die zunächst unter AZT beschrieben wurden (Larder 1989), aber auch durch D4T selektiert werden können (Loveday 1999). Es werden zwei Mutationspfade unterschieden: den sogenannten TAM-1 Pfad mit 41L, 210W und 215Y und den TAM-2 Pfad mit D67N, K70R, T215F und K219Q/E (Flandre 2004). In Abhängigkeit von den einzelnen TAMs und deren Kombination variiert der Resistenzfaktor und entsprechend auch der Resistenzgrad für AZT von einstelligen bis dreistelligen Werten, wo hingegen für D4T ein weitaus niedriger Faktor zur vollständigen Resistenz ausreicht. Dies verdeutlicht, dass Resistenzfaktoren von unterschiedlichen Medikamenten nicht miteinander verglichen werden dürfen. Unter AZT- und D4T-basierten Regimen wird häufiger der TAM-1 Pfad beobachtet (Cozzi-Lepri 2009). Statt TAMs wird oftmals auch der Begriff der „NAMs“ (Nukleosidanaloga-Mutationen) verwendet, da diese Mutationen auch mit einer Kreuzresistenz gegenüber allen anderen NRTIs – ausgenommen 3TC und FTC – verbunden sind (Harrigan 2000). Insbesondere die Kombination von bestimmten TAMs kann die Wirksamkeit von ABC, DDI und TDF stark beeinträchtigen (s. Tabelle 8).

Unter einer versagenden ABC- oder DDI-Therapie treten meist die Mutationen L74V/I und seltener die Mutation K65R auf. Y115F ist eine spezifische Resistenz-assoziierte ABC-Mutation.

Auch die Wirksamkeit von Tenofovir wird durch TAMs negativ beeinflusst. Insbesondere durch die Mutation L210W, die meist nicht alleine nachweisbar ist, wird das virologische Ansprechen schlechter (Antoniou 2003). In Analogie zu ABC und DDI gilt auch für TDF, dass TAMs nur „reselektioniert“ werden, aber nicht unter diesen Medikamenten neu entstehen.

Selektioniert wird unter TDF primär die Mutation K65R. Sie bewirkt eine intermediäre Resistenz gegenüber TDF, ABC, DDI, 3TC, FTC und D4T (Shafer 2003, Garcia-Lerma 2003). Bei bereits vorhandenen TAMs wird K65R kaum beobachtet, denn TAMs und K65R stellen zwei antagonistische Resistenzpfade dar. K65R tritt nur selten auf demselben Genom zusammen mit TAMs auf und praktisch nie zusammen mit L74V (Wirden 2005). Ähnlich wie in den großen klinischen TDF-Studien mit divergenten Therapieregimen scheint sich die Inzidenz der Mutation K65R bei ≤5 % stabilisiert zu haben. Dagegen wurde bei den Triple-Nuke-Kombinationen wie TDF+3TC+ABC oder TDF+3TC+DDI häufig ein Therapieversagen in Zusammenhang mit K65R beobachtet (Gallant 2003, Landman 2005). Als Grund für die hohe Versagerrate wird die niedrige genetische Barriere dieser Therapieregime vermutet: Das Auftreten der Mutation K65R bewirkt einen Sensitivitätsverlust gegen alle drei Medikamente.

K65R erhöht die Sensitivität gegenüber AZT bzw. bewirkt eine Resensitivierung gegenüber AZT, falls bereits (wenige) TAMs vorhanden sind. (White 2005, Underwood 2005). Umgekehrt reduzieren TAMs die K65R-assoziierte Resistenz gegen TDF, ABC und DDI (Parikh 2007).

Wie M184V reduziert auch K65R (im Gegensatz zu TAMs oder L74V/I) die virale Fitness: die mediane Replikationskapazität für Viren mit M184V/I oder K65R liegt bei 68 % bzw. 72 % (McColl 2005), bei gleichzeitigem Vorhandensein von K65R und M184V sinkt sie auf nur 29 % (Miller 2003, Deval 2004). Seltener als K65R wurde die Mutation K70E oder K70G unter versagender Therapie mit Tenofovir beobachtet, insbesondere bei Kombinationen mit Abacavir und 3TC (Delaugerre 2008, Bradshaw 2007)

Die Mutationen  M184V, L74V sowie die NNRTI-spezifischen Mutationen L100I und Y181C können einen antagonistischen Effekt auf die Resistenzentwicklung gegenüber NRTIs ausüben (Vandamme 1999, Underwood 2005). L74V/I mit oder ohne M184V führt für AZT und TDF zu einer Herabsetzung der IC50 um ca. 70 %; entsprechend ist die phänotypische Empfindlichkeit um ca. den Faktor 3 erhöht (Underwood 2005).

M184V bewirkt für AZT eine Resensitivierung bzw. eine Herabsetzung der IC50 um 50-60 % und für D4T eine IC50-Minderung um ca. 30 %. Diese Resensitivierung kann in Abhängigkeit von bestimmten TAMs klinisch relevant sein (Shafer 1995, Underwood 2005). Die Phänotypisierung von 9.000 Proben zeigte in 79 % der Fälle eine mehr als 10-fache AZT-Resistenz, falls M41L, L210W und T215Y nachgewiesen wurden. War jedoch zusätzlich M184V vorhanden, wiesen nur noch 52 % eine mehr als 10-fache AZT-Resistenz auf (Larder 1999). M184V erhöht auch die Empfindlichkeit gegenüber TDF (Miller 2001, Miller 2004a). Im Gegensatz dazu kann M184V zusammen mit multiplen TAMs die Resistenz gegenüber ABC verstärken (Harrigan 2000, Shafer 2003).

Eine so genannte Multi-Drug-Resistenz (MDR) gegenüber allen Nukleosid-Analoga – mit Ausnahme von 3TC und wahrscheinlich FTC – liegt vor, falls eine der folgenden Kombinationen vorkommt: T69SSX, d. h. die Mutation T69S plus einer Insertion von zwei oder mehr Aminosäuren (SS, SG oder SA) zwischen Position 69 und 70, plus eine AZT-assoziierte Mutation oder aber Q151M plus eine weitere MDR-Mutation wie V75I, F77L oder F116Y (Masquelier 2001, Miller 2001, Miller 2004). Die MDR-Mutation Q151M allein bewirkt eine intermediäre Resistenz gegenüber AZT, D4T, DDI und ABC. Sie kommt mit einer Prävalenz von unter 5 % relativ selten vor. Gegenüber TDF führt Q151M nur zu einem geringen Aktivitätsverlust. In Kombination mit Mutationen an den Positionen 75, 77, und 116 entstehen eine hochgradige Resistenz gegenüber AZT, DDI, D4T und ABC und eine intermediäre Resistenz gegenüber TDF (Shafer 2003).

Diese T69SSX-Insertion oder auch die Mutation Q151M führen jeweils zusammen mit der Mutation M184V zu einer um ca. 70 % verminderten viralen Replikationskapazität (Miller 2003, Deval 2004).

Quantitative Empfindlichkeitsmessungen an großen Kohorten zeigten, dass bei NRTI-vorbehandelten Patienten in bis zu 29 % eine Hypersuszeptibilität gegenüber NNRTIs (Erniedrigung der inhibitorischen Konzentration um den Faktor 0,3–0,6) besteht. Eine reduzierte AZT- bzw. 3TC-Empfindlichkeit korrelierte invers mit einer erhöhten NNRTI-Suszeptibilität (Shulman 2000). Insbesondere die RT-Mutationen T215Y, H208Y und V118I sind prädiktiv für eine Hypersuszeptibilität gegenüber Efavirenz. Eine Datenbank-Analyse einiger Tausend paarweise gemessener Geno- und Phänotypen zeigte eine NNRTI-Hypersuszeptibilität sowohl beim Vorhandensein von TAMs als auch bei nicht-Thymidinanaloga-assoziierte NAMs. Eine Hypersuszeptibilität gegenüber Efavirenz lag gleichermaßen bei 1-2 TAMs, multiplen TAMs+M184V und nicht-Thymidinanaloga-assoziierten NAMs, wie K65R, T69X, M184V und insbesondere K65R+M184V vor (Whitcomb 2002, Shulman 2004, Coakley 2005a). Bislang haben diese Ergebnisse jedoch nicht zu neuen Therapiestrategien geführt.

NNRTIs

Erstgenerations-NNRTIs (Efavirenz, Nevirapin)

Bei den NNRTI sind zahlreiche Mutationen beschrieben, die isoliert aber auch kombiniert auftreten können. Eine einzige Mutation kann bereits in einer hochgradigen Resistenz gegenüber einem oder mehreren NNRTI resultieren.

Die häufige Mutation K103N bewirkt eine 20–50-fache Resistenz gegen Efavirenz und Nevirapin (Petropolus 2000). Y181C/I bewirkt eine 30-fache Nevirapin-Resistenz. Auch der Therapieerfolg von Efavirenz scheint dann nur vorübergehend zu sein, weshalb auch Efavirenz bei Vorliegen dieser Mutation nicht verordnet werden sollte. G190A ist mit einer hochgradigen Nevirapin-Resistenz sowie einer intermediären Efavirenz-Resistenz verbunden, G190S und Y188C/L/H mit einer  hohen Resistenz gegen beide Substanzen (Shafer 2003, De Mendoza 2002).

Der alleinige Nachweis von A98G/S (häufiger bei Subtyp C) oder V108I ist meist nicht klinisch relevant; Mutationen, wie L101E oder L101P können hingegen schon alleine eine intermediäre Resistenz bewirken. V106A führt sogar zu einer über 30-fachen Nevirapin-Resistenz. Im Gegensatz zu Subtyp B-Viren entsteht bei Subtyp C-Viren häufiger die Mutation V106M. Sie ruft nicht nur eine Nevirapin-Resistenz, sondern auch eine Efavirenz-Resistenz hervor (Grossman 2004).

Der weitere Einsatz von Erstgenerations-NNRTI ist bei Nachweis entsprechender Mutationen nicht zu empfehlen, damit nicht weitere Mutationen selektioniert werden, die die Wirksamkeit von Zweitgenerations-NNRTI beeinflussen können.

Zweitgenerations-NNRTIs

Etravirin ist gegen Viren mit einzelnen NNRTI-Mutationen wie K103N, Y188L und/oder G190A aktiv (Andries 2004). Im Vergleich zu anderen NNRTIs hat Etravirin eine höhere genetische Barriere, wahrscheinlich aufgrund einer flexiblen Bindung an die Reverse Transkriptase. Eine hochgradige Resistenz wird meist bei mehr als zwei Mutationen beobachtet (Mills 2007, Katlama 2007, Vingerhoets 2007). Im Labor wurden nach mehreren in-vitro-Passagen vor allem die RT-Mutationen V179F (eine neue Variante an dieser Position) und Y181C selektioniert, aber auch L100I, E138K, Y188H, G190E, M230L und V179I (Brillant 2004, Vingerhoets 2005). Die häufig vorkommende Mutation K103N beeinflusst die Wirksamkeit nicht (Vingerhoets 2006).

In den DUET-Studien wurden nachfolgende Resistenz-assoziierte Etravirin-Mutationen identifiziert: V90I, A98G, L100I, K101E/H/P, V106I, E138A, V179D/F/T, Y181C/I/V, G190A/S und M230L. Hauptselektionskriterium war der Effekt der Baseline-Mutation auf das virologische Ansprechen (<50 Kopien/ml) unter Etravirin zu Woche 24. Hinzu kam als weiteres Kriterium die Korrelation zwischen Mutation und Resistenzfaktor. Neu ist die Gewichtung einzelner NNRTI-Mutationen. Von den 17 Etravirin-Mutationen erhielten Y181I/V mit einem Gewichtungsfaktor von 3, gefolgt von L100I, K101P, Y181C und M230L mit 2,5 die höchsten Werte. Den Mutationen E138A, V106I, G190S und V179F wurde ein Gewichtungsfaktor von 1,5 und den übrigen Mutationen einer von 1 zugeordnet. Im Gesamtscore wurden 0-2 Punkte mit einer virologischen Ansprechrate von 74 % (bestes Ansprechen), 2,5-3,5 Punkte mit 52 % (intermediär) und ≥4 Punkte mit 38 % (vermindertes Ansprechen) korreliert.

In einem Panel von 4.248 NNRTI-resistenten klinischen HIV-1 Isolaten wiesen die am stärksten gewichteten Mutationen Y181I/V eine niedrige Prävalenz von 1,5 % und 0,9 % auf. Die Mutation Y181C, die häufiger unter Nevirapin als unter Efavirenz selektiert wird, hat in diesem Kollektiv eine Prävalenz von 32 % (Vingerhoets 2008). Monogram hat einen Etravirin-Score mit 37 ebenfalls gewichteten Mutationen entwickelt. Die Mutationen mit der höchsten Resistenzeinstufung (Punktwert 4) sind L100I, K101P und Y181C/I/V. Einen Punktwert von 3 erhielten die Mutationen E138A/G, V179E, G190Q, M230L, K238N. Einen Punktwert von 2 bekamen K101E, V106A/I, E138K, V179L, Y188L, G190S. Einfach gewertet werden die V90I, A98G, K101H, K103R, V106M, E138Q, V179D/F/I/M/T, Y181F, V189I, G190A/E/T, H221Y, P225H und K238T. Ab 4 Punkten ist ein Wirkverlust von Etravirine wahrscheinlich. Der Wirkungsverlust steigt mit zunehmendem Gesamtscore (Haddad 2010).

Rilpivirin scheint wie Etavirin in seiner Wirksamkeit nicht oder kaum von einzelnen NNRTI-Mutationen wie K103N, V106A oder G190A beeinträchtigt zu werden. In vitro wurden mit 40 nM über 30 Tage keine resistenten Varianten selektiert. Unter 10 nM wurden innerhalb von 8 Tagen bis zu acht Mutationen selektiert, darunter L100I, V106I, Y181C und M230I; die IC50-Erhöhung lag in diesem Fall bei 4.

In einer Studie an therapienaiven Patienten ohne bekannte NNRTI-Mutation wurden unter Rilpivirin insgesamt acht neu auftretende Mutationen beobachtet: L100I, K101E, K103N, E108I, E138K/R, Y181C und M230L (Molina 2008). Es besteht eine Kreuzresistenz von über 90 % zwischen Rilpivirin und Etravirin.

Im Rahmen zweier Phase 3-Studien, in denen Rilpivirin gegen Efavirenz getestet wurde, war virologisches Versagen unter Rilpivirin häufiger (10,5 % versus 5,7 %). Zudem wurden bei diesen Patienten häufiger Resistenzmutationen nachgewiesen (63 % versus 54 %). Die häufigsten unter Rilpivirin waren dabei E138K (45 %), K101E (13 %), H221Y (10 %), V189I (8 %), Y181C (8 %) und V90I (8 %). Bei 46 %, 31 % und 23 % der resistenten Isolate wurden 1, 2 bzw. 3 NNRTI-Mutationen nachgewiesen. Eine Kreuzresistenz zu Efavirenz ist eher unwahrscheinlich – bei Therapieversagen mit Efavirenz traten andere primäre Mutationen auf, wie K103N (39 %), V106M (11 %) und Y188C (7 %).

Auch NRTI-Mutationen wurden bei Therapieversagen unter Rilpivirin häufiger als unter Efavirenz nachgewiesen (68 % versus 32 %). Unter Rilpivirin war dies vor allem M184I, unter Efavirenz dagegen M184V (Eron 2010).

PIs

Erstgenerations-PIs

Das Spektrum relevanter PI-Mutationen ist sehr groß. Obwohl bei Akkumulation mehrerer PI-Mutationen eine moderate bis hohe Kreuzresistenz zwischen den Erstgenerations-PIs beschrieben ist, sind für die einzelnen Substanzen die primären Mutationen relativ spezifisch. Bei früher Umstellung auf eine andere PI-Kombination, d. h. vor Akkumulation mehrerer Mutationen, kann die Folgetherapie durchaus erfolgreich sein. Die meisten Daten zu den primären Mutationen stammen aus Zeiten, in denen die PIs noch ungeboostert gegeben wurden. Unter einer Primärtherapie mit geboostertem Lopinavir, Fosamprenavir, Saquinavir, Atazanavir oder Darunavir plus je zwei NRTIs treten dagegen auch bei virologischem Versagen extrem selten primäre PI-Mutationen auf. Falls Mutationen nachgewiesen werden sind dies meist NRTI-Mutationen (Eron 2006, Walmsley 2007, Clumeck 2007, Gathe 2008, Lataillade 2008, Molina 2008). Primäre Resistenzen unter geboosterten PIs – selbst unter PI-Monotherapie – sind bislang Einzelfälle (Conradie 2004, Friend 2004, Lanier 2003, Coakley 2005b, Lataillade 2008).

Nelfinavir: Resistenzprofile mit der primären Mutation D30N sowie weiteren sekundären Mutationen bewirken nur eine geringe Kreuzresistenz zu anderen PIs (Larder 1999). Ein Therapieversagen unter Nelfinavir kann auch mit L90M einhergehen (Craig 1999). Während bei Subtyp B-Viren unter Nelfinavir häufig zunächst D30N oder M46I plus N88S als erste Mutationen auftreten, sind das bei den Subtypen C, G und AE häufiger die Mutationen L90M und I84V. Ein Grund für diese unterschiedlichen Resistenzpfade liegt im Vorkommen der natürlichen Polymorphismen: Während der Polymorphismus M36I nur bei ca. 30 % der B-Subtypen vorkommt, ist er bei Non-B-Subtypen häufiger (Gonzales 2004, Snoeck 2006).

Ungeboostertes Saquinavir selektiert G48V/M, eine Mutation, die die Empfindlichkeit um das 10-fache reduziert. Zusammen mit L90M kann ein hochgradiger Sensitivitätsverlust entstehen (Jacobson 1995). Unter einer versagenden geboosterten Saquinavir-Therapie sind meist mehr Mutationen, häufig in Kombination mit I84V/A, nachweisbar (Valer 2002). In einer retrospektiven Analyse wurden bei 138 PI-behandelten Patienten die Mutationen L10F/I/M/R/V, I15A/V, K20I/M/R/T, L24I, I62V, G73ST, 82A/F/S/T, I84V und L90M mit einem virologischen Versagen assoziiert (Marcelin 2007a). Die Mutation L76V kann dagegen zu einer klinisch relevanten Resensitivierung führen (Braun 2007).

Fosamprenavir: Unter versagender Therapie wurden insbesondere folgende, primäre Resistenzmutationen selektiert: I54L/M, I50V oder V32I plus I47V – jeweils häufig zusammen mit der Mutation M46I (Maguire 2002) In der Zephir-Studie wurde an 121 Patienten das virologische Ansprechen auf eine Therapie mit Fosamprenavir/r evaluiert. Bei weniger als drei Mutationen aus L10I/F/R/V, L33F, M36I, M46I/L, I54L/M/T/V, I62V, L63P, A71I/L/V/T, G73A/C/F/T, V82A/F/S/T, I84V und L90M sank die Viruslast zu Woche 12 um 2,4 Logstufen, im Vergleich zu nur -0,1 log bei 4 oder mehr Mutationen. Eine Viruslast unter 400 Kopien/ml erreichten 80 % der Patienten mit maximal 3 Mutationen, verglichen mit 35–45 % mit 4-7 Mutationen und nur 10 % mit mehr Mutationen (Pellegrin 2005).

In einer retrospektiven Untersuchung an 73 PI-vorbehandelten war N88S/D mit erhöhtem Ansprechen assoziiert (Masquelier 2008).  L76V kann unter Fosamprenavir oder Lopinavir entstehen (Müller 2004).

Lopinavir: Wie bei anderen geboosterte PIs sind Mutationen unter einer Primärtherapie extrem selten. Einzelfälle berichten von virologischem Versagen mit dem vorübergehenden Auftreten der Mutation V82A, das gefolgt war von den Mutationen V32I, M46M/I und I47A (Friend 2004). In einer Monotherapie-Studie wurden drei Isolate mit der Mutation L76V detektiert (Delaugerre 2007).

Bei PI-vorbehandelten Patienten korreliert das Ansprechen auf Lopinavir negativ mit der Anzahl folgender Mutationen: L10F/I/R/V, K20M/R, L24I, M46I/L, F53L, I54L/T/V, L63P, A71I/L/T/V, V82A/F/T, I84V, L90M. Bei bis zu 5 Mutationen ist die IC50 im Median um den Faktor 2,7 erhöht, bei 6–7 Mutationen um 13,5 und bei mindestens 8 Mutationen um den Faktor 44 (Kempf 2001). Ein anderer Resistenzalgorithmus für Lopinavir/r bezieht 20 Mutationen an 12 verschiedenen Positionen ein (L10F/I, K20I/M, M46I/L, I50V, I54A/M/S/T/V, L63T, V82A/F/S sowie G16E, V32I, L33F, E34Q, K43T, I47V, G48M/V, Q58E, G73T, T74S, L89I/M). Bei 7 Mutationen kann von einer IC50– Erhöhung um den Faktor 10 und damit von einer Resistenz gegenüber Lopinavir ausgegangen werden. Insbesondere Mutationen an den Positionen 50, 54 und 82 scheinen einen Einfluss auf die phänotypische Resistenzlage zu haben (Parkin 2003, Jimenez 2005).

In einer Follow-up-Analyse der Isolate von 54 Patienten mit versagender Lopinavir-Therapie wurden vor allem Mutationen an den Positionen 46, 54 und 82 selektioniert, seltener L33F, I50V oder V32I zusammen mit I47V/I (Mo 2005).

I47A, eine Mutation, die erst nach der Einführung von Lopinavir beobachtet wurde, erniedrigt die Bindungsaffinität für Lopinavir und bewirkt einen 86 bis >110-fachen Sensitivitätsverlust. Dahingegen führt I47A aufgrund einer höheren Bindungsaffinität für Saquinavir zu einer Hypersuszeptibilität (Kagan 2005).

Dass auch bei 5 bis 10 Resistenzmutationen, die eigentlich für eine komplette PI-Kreuzresistenz sprechen, eine Resensitivierung möglich ist, wurde von einer deutschen Arbeitsgruppe beschrieben. Die Mutation L76V, die in erster Linie durch eine Therapie mit Lopinavir selektiert wird und seltener auch unter Amprenavir entstehen kann, ist mit einer Resistenz gegen Lopinavir, Amprenavir und Darunavir assoziiert, kann aber zu einer Resensitivierung gegenüber Atazanavir, Saquinavir oder Tipranavir führen (Müller 2004, De Meyer 2006b, Braun 2007).

Atazanavir hat zumindest partiell ein eigenes Resistenzprofil. Bei therapienaiven Patienten wird primär meist die Mutation I50L selektioniert – häufig in Kombination mit A71V, K45R, und/oder G73S. I50L führt zwar zu einem Sensitivitätsverlust gegenüber Atazanavir, erhöht jedoch die Empfindlichkeit gegenüber den anderen Erstgenerations-PIs, deren Bindungsaffinität für die HIV-Protease insbesondere bei I50L+A71V zwei- bis neunfach erhöht ist. Selbst in Gegenwart anderer primärer und sekundärer PI-Mutationen kann I50L die Suszeptibilität anderer PIs erhöhen (Colonno 2002, Weinheimer 2005). Bei PI-vorbehandelten Patienten entstand I50L jedoch nur in einem Drittel der Fälle (Colonno 2004). Die Akkumulation von PI-Mutationen wie L10I/V/F, K20R/M/I, L24I, L33I/F/V, M36I/L/V, M46I/L, M48V, I54V/L, L63P, A71V/T/I, G73C/S/T/A, V82A/F/S/T, L90M und insbesondere I84V führen zu einem Sensitivitätsverlust. Bei ungeboostertem Atazanavir korreliert die Zahl dieser Mutationen mit der Viruslastsenkung.

Die genetische Barriere von geboostertem Atazanavir ist im Vergleich zu ungeboostertem Atazanavir deutlich höher (Colonno 2004, Gianotti 2005): In der CASTLE-Studie an therapienaiven Patienten wurden lediglich in zwei Fällen PI-resistente Viren unter geboostertem Atazanavir nachgewiesen. Bei einem Patienten, bei dem Viren mit M46M/I+N88N/S detektiert wurden, konnte die Viruslast bei gleicher ART zu Woche 96 unter 50 Kopien/ml gesenkt werden. Bei dem zweiten Patienten war ein Zwei-Klassen-resistentes Virus mit folgenden PI-Mutationen V32I+M46I+L90M und den RT-Mutationen K65K/R, K70K/E, M184V nachweisbar. Es ist unklar, ob minore Resistenzen vor Therapie vorlagen (Lataillade 2008).

Der von Pellegrin und Kollegen entwickelte „Reyaphar-Score“ beinhaltet Mutationen an 12 Positionen, die mit reduziertem Ansprechen auf geboostertes Atazanavir assoziiert sind (L10I/F/R/V, K20I/M/R, L241, M461/L, 154L/M/T/V, Q58E, L63P, A71I/L/V/T, G73A/C/F/T, V771, V82A/F/S/T, I84V und L90M). Bei weniger als 5 „Reyaphar-Mutationen“ betrug die gemittelte Viruslastreduktion nach 12 Wochen 1,4 Logstufen, bei mehr als 5 Mutationen nur noch 0,5 Logstufen (Pellegrin 2006).

Zweitgenerations-PIs

Tipranavir wirkt gut gegen Viren mit multiplen PI-Resistenzen. Selbst bei verminderter Empfindlichkeit auf Darunavir erwies sich noch ca. die Hälfte von 586 Virusisolaten als empfindlich auf Tipranavir (De Meyer 2006a). In vitro waren L33F und I84V die ersten Mutationen, die unter Tipranavir auftraten, allerdings gingen sie nur mit einer 2-fach erniedrigten Sensitivität einher. Am Ende der Selektionsexperimente wurden Viren mit 10 Mutationen (L10F, I13V, V32I, L33F, M36I, K45I, I54V, A71V, V82L, I84V) und einer um den Faktor 87 verminderten Suszeptibilität beobachtet (Doyon 2005). Diese und weitere Experimente führten dazu, dass einige Mutationen frühzeitig als Schlüsselmutationen galten, den damals so genannten PRAMs (protease inhibitor-resistance associated mutations). Zu den PRAMs zählen L33I/V/F, V82A/F/L/T, I84V und L90M. Bei mindestens 3 PRAMs sank die Viruslast unter geboostertem Tipranavir plus optimiertem Background nach 2 Wochen dennoch um 1,2 Logstufen, verglichen mit nur 0,2-0,4 Logstufen unter Regimen mit Amprenavir, Saquinavir oder Lopinavir (Cooper 2003, Johnson 2008, Mayers 2004).

In Reanalysen der Phase II/III-Studien wurden einige PRAMs bestätigt, andere als klinisch nicht relevant eingestuft (z.B. L90M), aber auch neue Resistenzmutationen identifiziert (Kohlbrenner 2004). Daraus wurde der „ungewichtete“ Tipranavir-Mutationsscore entwickelt, der 21 Proteasemutationen an 16 Positionen einbezieht (I10V, I13V, K20M/R/V, L33F, E35G, M36I, N43T, M46L, I47V, I54A/M/V, Q58E, H69K, T74P, V82L/T, N83D und I84V) (Baxter 2006). Dieser ungewichtete Scores wurde mit einem “gewichteten“, aus den RESIST-Studien generierten Tipranavir-Score weiter entwickelt (Scherer 2007). Einbezogen in die Modellrechnungen wurden Mutationen des ungewichteten Tipranavir-Scores plus fünf Mutationen (24I, 30N, 50L/V, 54L, 76V), denen man eine erhöhte Tipranavir-Suszeptibilität zuordnete. Den Mutationen wurden somit positive oder negative Gewichtungspunkte zugeordnet, die aufsummiert den gewichteten Tipranavir-Score ergeben. Die Hauptmutationen („major mutations“) I47V, I54A/M/V, Q58E, T74P, V82L/T, N83D tragen wesentlich zur Resistenz gegen Tipranavir bei und haben ein Gewicht von 3 bis 6. Mutationen mit erhöhter Empfindlichkeit und negativem Gewicht zwischen -7 und -2 sind L24I, I50L/V, I54L und L76V. Die Mutationen 33F, 13V und 69K, die häufiger bei Non-B-Subtypen vorkommen, wurden aus dem Score entfernt. Bei einem Score zwischen 3 und 10 ist Tipranavir noch partiell wirksam und erst über 10 geht man bei diesem Algorithmus von einer Resistenz aus. Nationale Resistenzalgorithmen unterscheiden sich insbesondere in der Gewichtung, die den einzelnen Mutationen zugeordnet wurde (siehe Tabelle 10).

Darunavir besitzt ebenfalls eine gute Aktivität gegen ein großes Spektrum PI-resistenter Viren. In vitro entwickelt sich eine Resistenz gegen Darunavir langsamer als gegen Nelfinavir, Amprenavir oder Lopinavir. In vitro wurden nach mehreren Passagen neben R41T und K70E zwei Mutationen selektiert, die mit einer reduzierten Replikationsfitness einhergingen. Viren mit einer über 10-fachen Suszeptibilitätsverlust gegen Darunavir zeigten zwar auch gegenüber Saquinavir den entsprechenden Suszeptibilitätsverlust, nicht aber gegen andere PIs (Atazanavir wurde nicht untersucht). Bei primärem Versagen muss also nicht notwendigerweise von einer kompletten Kreuzresistenz ausgegangen werden (De Meyer 2003+2005).

Elf Mutationen an 10 Positionen wurden, sofern mindestens drei auftraten, mit einer verminderten Ansprechrate auf geboostertes Darunavir assoziiert: V11I, V32I, L33F, I47V, I50V, I54L/M, T74P, L76V, I84V und L89V. Die einzelnen Mutationen scheinen jedoch die Empfindlichkeit unterschiedlich stark zu beeinflussen. An erster Stelle steht I50V, gefolgt von I54M, L76V und I84V. Danach folgen V32I, L33F und I47V. Den geringsten Einfluss haben V11I, I54L, G73S und L89V. Diese Gewichtung muss allerdings noch validiert werden.

Neue Mutationen, die bei Therapieversagen auftraten, sind V32I, L33F, I47V, I54L und L89V. Ca. 50 % dieser Isolate waren noch sensibel auf Tipranavir. Umgekehrt waren über 50 % der Isolate mit verminderter Tipranavir-Empfindlichkeit noch empfindlich auf Darunavir (De Meyer 2006a, De Meyer 2006b, Prezista US Product Information 2006, Johnson 2008). Der Nachweis der Mutation V82A ist, basierend auf den POWER/DUET-Studien, positiv mit einem Ansprechen korreliert (De Meyer 2009). Eine Datenbankanalyse von ca. 50.000 gepaarten Geno- und Phänotypen ergab, dass zwischen 2006 und 2009 der mediane Resistenzfaktor für die Darunavir-resistenten Proben (n=2141) von 38 auf 50 anstieg und für Tipranavir von 7,6 auf 4,3 sank. In diesem Zeitraum wurde, wahrscheinlich durch den erhöhten Gebrauch der Substanz, ein Anstieg bekannter Darunavir-Mutationen beobachtet: I50V (von 11 auf 15 %), I54L (von 17 auf 33 %) und L76V (von 5 auf 9 %). Die drei Mutationen E35N, I47A und V82L wurden erstmalig mit einer Resistenz gegen beide Substanzen assoziiert. Dagegen wurden die Mutationen L10F, G48M und V82F alleine Darunavir und I54S, I84V und I84C alleine Tipranavir zugeordnet. Diese zumindest partiell unterschiedlichen Mutationsmuster könnten strategisch genutzt werden (Stawiski 2010).

Fusionsinhibitoren

Dieser Abschnitt beschränkt sich auf Resistenzmutationen unter Enfuvirtid (T-20). In dem aus 351 Codons bestehenden gp41-Gen gibt es sowohl Positionen mit sehr hoher Variabilität als auch sehr konservierte Bereiche. Polymorphismen wurden bisher in allen gp41-Regionen beobachtet, die höchste Variabilität liegt in der HR2-Region. Primärresistenzen auf T-20 sind sehr selten (Wiese 2005).

Ein Wirkverlust von T-20 geht meist mit Mutationen an der T-20-Bindungsstelle – der HR1 (Heptad Repeat 1)-Region von gp41 – einher. Insbesondere betroffen sind die HR1-Positionen 36 bis 45, wie z. B. G36D/E/S, V38A/M/E, Q40H/K/P/R/T, N42T/D/S, N43D/K oder L45M/L. Der Grad an Resistenz bzw. der Faktor, um den die Suszeptibilität abnimmt (kann von unter 10 bis zu mehreren hundert reichen), hängt sowohl von der Position der Mutation als auch dem jeweiligen Aminosäureaustausch ab. Der Resistenzgrad ist bei Doppelmutationen in der Regel höher als bei singulären Mutationen. Bei Doppelmutationen wie G36S+L44M, N42T+N43K, N42T+N43S oder Q40H+L45M wurde je ein >250-facher IC50-Anstieg beobachtet. Daneben beeinflussen auch Mutationen in HR2 und Veränderungen in der Virushülle die Resistenzlage (Sista 2004, Mink 2005). So wurde z. B. in klinischen Virusisolaten mit der singulären HR1-Mutation G36D ein Suszeptibilitätsverlust zwischen 4- und 450-fach beobachtet. In dem Isolat mit 450-fachem Suszeptibilitätsverlust wurde auch an Position 126 auf HR2 eine heterozygote Veränderung beobachtet (N/K). Weitere Mutationen im gp41-Gen wurden auch an den Positionen 72, 90 und 113 gefunden (Sista 2004, Loutfy 2004).

Bei 6/17 Patienten mit virologischem Versagen entwickelte sich die Mutation S138A in der HR2-Region von gp41 – meist in Kombination mit einer Mutation an Position 43 auf HR1 und zusätzlichen Sequenzveränderungen an HR2-Positionen mit bekannten Polymorphismen (Xu 2004).

Ohne den Selektionsdruck durch T-20 ist die virale Replikationskapazität in Gegenwart von HR1-Mutationen im Vergleich zum Wildtyp deutlich reduziert, und zwar mit folgender Rangordnung: Wildtyp > N42T > V38A > N42T, N43K ≈ N42T, N43S > V38A, N42D ≈ V38A, N42T. Virale Fitness und T-20-Suszeptibilität korrelieren miteinander invers (Lu 2004).

CCR5-Antagonisten

CCR5-Antagonisten sollen nur bei Patienten mit ausschließlich CCR5-tropen Viren eingesetzt werden. Bei CXCR4- oder dual-tropen Viren wird von einer Therapie abgeraten. Deshalb muss vor dem Einsatz von CCR5-Antagonisten ein Tropismustest durchgeführt werden (siehe oben).

CCR5-trope Viren sind bei therapienaiven Patienten zu ca. 80-85 % und bei therapieerfahrenen Patienten zu ca. 50-60 % nachweisbar. Ausschließlich X4-trope Viren sind sehr selten (Brumme 2005, Melby 2006, Moyle 2005, Wilkin 2006, Hunt 2006, Coakley 2006). Die Wahrscheinlichkeit X4-troper Viruspopulationen steigt mit Abfall der absoluten und relativen CD4-Zellzahl, sowohl bei therapienaiven als auch bei therapieerfahrenen Patienten (Brumme 2005, Hunt 2006). Bei 50 therapienaiven Patienten mit einer CD4-Zellzahl von unter 200/µl wurden in 62 % R5-trope Viren nachgewiesen (Simon 2010).

Zwei Arten der Resistenzbildung gegen CCR5-Antagonisten sind zu unterscheiden: einerseits der Rezeptor-Switch von R5- zu X4-tropen bzw. dual-tropen Viren, andererseits aber auch Mutationen, die das Virus in die Lage versetzen, CCR5-Moleküle auch in Gegenwart von CCR5-Antagonisten für den Eintritt in die Zelle zu nutzen.

Bei ca. einem Drittel der Patienten mit Therapieversagen unter Maraviroc wurde ein Shift von CCR5- zu CXCR4-tropen Viren beschrieben (Heera 2008). Retrospektive Untersuchungen mit sensitiveren Verfahren haben gezeigt, dass bei einigen Patienten mit Therapieversagen bereits vor Therapiebeginn minore X4-Varianten vorhanden waren. Vereinzelt wurde allerdings auch im Kontrollarm ohne Maraviroc ein Rezeptor-Shift beobachtet (Mori 2007, Lewis 2007).

Im Rahmen einer Studie mit Vicriviroc wurden 118 Proben mit dem verbesserten TrofileTM-Test ESTA reanalysiert. 25 Patientenproben wurden mit dem sensitiveren Test als dual-trop eingestuft. Der Nachweis dieser minoren Viruspopulationen war mit einer geringeren Viruslastreduktion unter Vicriviroc assoziiert (Reeves 2008).

Proben von 360 Patienten mit R5-Tropismus aus der MERIT-Studie wurden mit dem sensitiveren Trofile-Assay (ESTA) und mittels Populationssequenzierung bzw. Ultradeep-Sequenzierung (454-Verfahren) reanalysiert. Die genotypische Interpretation erfolgte mit dem Corezeptortool von geno2pheno, wobei eine FPR-Grenze von 5,75 % verwendet wurde. Der jeweils mit den drei  Testmethoden ermittelte Tropismus war unabhängig vom Subtyp gleichermaßen prädiktiv für den Therapieerfolg zu Woche 48 und 96 (Portsmouth 2010b).

Da nicht jedes minore X4-Virus notwendigerweise zum Therapieversagen führt, wie aus der Reanalyse der Maraviroc-Studie 1029 hervorgeht, ist eine höhere Sensitivität nicht notwendigerweise von Vorteil. In der Studie hatten Patienten mit einem minoren X4-Anteil von <10 % trotzdem oftmals ein Therapieansprechen unter einem Regime mit Maraviroc (Swenson 2009). Bevor sensitivere Tests im klinischen Alltag eingesetzt werden, müssen zuerst die klinisch relevanten Grenzwerte ermittelt werden. Auch für die genotypische Tropismusbestimmung mittels geno2pheno sind die Grenzwerte für die Trennung von X4- bzw. D/M- und R5-tropen Viren von elementarer Bedeutung. Die aktuellen Grenzwerte sind im Abschnitt „Methoden zur Tropismusbestimmung“ beschrieben.

Bei einem Therapieversagen ohne Tropismuswechsel unter Maraviroc oder Vicriviroc wurden unterschiedliche Mutationen im V3-Loop des HIV-1 Hüllproteins gp120 nachgewiesen. Die Resistenzmuster waren nicht einheitlich und es wurden ebenfalls Mutationen außerhalb des V3-Loop beschrieben. Die Häufigkeit und klinische Relevanz der einzelnen env-Mutationen kann derzeit noch nicht gut genug eingeordnet werden, um Aussagen zur Resistenz zu treffen. Zum Teil waren die Mutationen nicht mit einer IC50-Erhöhung assoziiert. Vielmehr ging die phänotypische Maraviroc-Resistenz mit einer Reduktion der maximal möglichen Virusinhibition in den Dosis-Wirkungskurven einher (Mori 2008, McNicholas 2009). Diese Beobachtung spricht dafür, dass Maraviroc-resistente Viren auch den CCR5-Rezeptor, an den Maraviroc bereits gebunden hat, nutzen können (Landovitz 2006, Westby 2007, Johnson 2008, Craig 2009). Eine Kreuzresistenz zwischen Maraviroc und dem nicht mehr weiterentwickelten Vicriviroc wurde zwar nach mehreren In-vitro-Passagen beschrieben, aber eine komplette Klassenresistenz auch mit anderen CCR5-Antagonisten wie TBR-652 ist bisher nicht bekannt (Palleja 2010).

Es ist noch unklar, ob Maraviroc-resistente, R5-trope Viren durch monoklonale CCR5-Antikörper wie PRO 140 gehemmt werden. Da PRO 140 im Gegensatz zu den bisherigen CCR5-Antagonisten extrazellulär an den CCR5-Korezeptor bindet, ist Kreuzresistenz eher unwahrscheinlich (Jacobson  2009).

Integrase-Inhibitoren

Sequenzanalysen bei Viren von therapienaiven Patienten zeigten, dass das Integrase-Gen zwar sehr polymorph ist, jedoch die meisten relevanten Resistenzpositionen, wie zum Beispiel an den Positionen 148 und 155, konserviert sind (Hacket 2008).

Raltegravir: Im Rahmen der STARTMRK Studie an therapienaiven Patienten waren nach 156 Wochen nur bei vier Patienten Raltegravir-Mutationen nachweisbar. Bei 42 von 49 Patienten mit virologischem Versagen wurde keine Resistenz nachgewiesen (Markowitz 2007, Rockstroh 2011).

Bei vorbehandelten Patienten mit Therapieversagen unter Raltegravir wurden im wesentlichen drei Schlüsselmutationen bzw. Resistenzpfade beschrieben: N155H, Q148K/R/H und seltener Y143R/C. Weitere Mutationen, die zusammen mit N155H beobachtet wurden, waren L74M, E92Q, T97A, V151I, G163R, G163K, S230R. In Kombination mit Q148K/R/H können nachfolgende Mutationen auftreten: L74M, T97A, E138A, E138K, G140A, G140S und G163R, wobei Mutationen der Position 140 dominieren. Die Mutationen Q148K/R/H und N155H kommen nicht gleichzeitig auf dem selben Virusgenom vor, dies gilt auch für die Mutation E92Q und Mutationen der Position 148. Das meist zeitlich versetzte Auftreten zusätzlicher Mutationen zu den Schlüsselmutationen N155H oder Q148K/R/H bewirkt eine Zunahme der Resistenz, und erhöht, je nach Mutationsmuster, die zuvor reduzierte virale Fitness. Dies gilt insbesondere für den Mutationsweg Q148H (Goethals 2008, Hatano 2008). Viren mit dem Mutationsmuster N155H + Sekundärmutationen werden oft durch eine resistentere und fittere Viruspopulation mit dem Mutationsmuster Q148H + G140S verdrängt (Fransen 2008, Miller 2008). Deshalb sollte Raltegravir bereits bei Detektion einer ersten Schlüsselmutation abgesetzt werden, um den Effekt eines möglichen Zweitgenerations-Integrase-Inhibitors nicht zu gefährden.

Seltenerer entsteht eine Raltegravir-Resistenz über die Mutation Y143H/R/C, zum Beispiel in Kombination mit E92Q, T97A, V151I, G163R oder S230R (Cooper 2007, Hazuda 2007, Fransen 2008, Steigbigel 2008). Ebenso können Viruspopulationen mit der Mutation N155H durch Viruspopulationen mit Y143C/H/R ersetzt werden (da Silva 2010).

Bei Patienten mit bestehenden Resistenzmutationen ist darauf zu achten, dass Raltegravir nicht als funktionelle Monotherapie eingesetzt wird. In der SWITCHMRK-Studie führten Patienten mit virologisch erfolgreicher Lopinavir/r-basierter ART diese entweder weiter oder ersetzten Lopinavir/r durch Raltegravir. Im Raltegravir-Arm gab es häufiger virologisches Versagen, wahrscheinlich aufgrund archivierter Resistenzmutationen, die die Wirksamkeit des NRTI-Backbones beeinträchtigten. Die genetische Barriere von Raltegravir ist demnach nicht so hoch wie die eines geboosterten PIs, der, anders als Raltegravir, in bestimmten Fällen auch als Monotherapie eingesetzt werden kann (Gatell 2009).

Elvitegravir: Die bisher am häufigsten aufgetretenen Mutationen sind E92Q, E138K, Q148R/H/K und N155H. Hochgradige Kreuzresistenz zwischen Raltegravir und Elvitegravir liegt bei der Kombination Q148H/R+G140S vor (McColl 2007, DeJesus 2007). E92Q ist häufig assoziiert mit der kompensatorischen Mutation L68V (Goodmann 2008). Da unter Elvitegravir auch Raltegravir-spezifische Resistenzmutationen entstehen, ist ein Erfolg von Raltegravir nach Elvitegravir-Versagen unwahrscheinlich (Goodman 2008, Waters 2009). Dies wird klinisch durch den Bericht über zwei Patienten bekräftigt (DeJesus 2007).

Dolutegravir: Dieser neue, viel versprechende Integrase-Inhibitor befindet sich derzeit in Phase-II-Studien. Er besitzt im Vergleich zu Raltegravir und Elvitegravir wahrscheinlich eine höhere genetische Barriere. In vitro wurde, wenn überhaupt, nur eine geringe Kreuzresistenz nachgewiesen (Lalezari 2009, Sato 2009). In der Viking-Studie, in der 27 Patienten mit Raltegravir-spezifischen Resistenzmutationen und einer Viruslast von >1.000 Kopien/ml Dolutegravir 50 mg QD erhielten, erreichten an Tag 11 immerhin 21/27 Patienten eine Viruslast von <400 Kopien/ml oder eine Viruslastsenkung von mindestens 0,7 log. Mutationen an der Position 148 in Kombination mit zwei weiteren Sekundärmutationen hatten allerdings negative Auswirkungen. Durch eine höhere Dosis (50 mg BID) können diese, wie in einer zweiten kleinen Kohortenanalyse kürzlich gezeigt wurde, zumindest kurzfristig überwunden werden. Resistenzmutationen an den Positionen 143 und 155 blieben ohne Einfluss auf die Wirksamkeit (Eron 2010+2011).

Finanzierung

Eine gesetzliche Kassenleistung ist in Deutschland nur die genotypische Resistenzanalyse des Protease und des Reversen Transkriptase-Gens. Dies gilt vorbehandelte Patienten mit ungenügender Virussuppression, aber auch für Schwangere vor Einleitung einer Transmissionsprophylaxe und für neu infizierte Patienten, deren HIV-Infektion nicht länger als ein Jahr zurückliegt.

Obwohl Europäische Therapieleitlinien die Analyse aller in Frage kommenden Genbereiche als selbstverständlich voraussetzen, ist die Sequenzierung weiterer Genbereiche wie die der Integrase, gp120 oder gp41 nicht Bestandteil des gesetzlichen Leistungskataloges. Dies gilt auch für die vor dem Einsatz von Maraviroc obligatorische Tropismustestung. Bis diese Leitungen in den EBM-Katalog integriert werden, können individuelle Anträge auf Kostenübernahme bei den Kostenträgern gestellt werden. Alternativ kann man nur versuchen, diese Leistungen im Rahmen von Forschungsprojekten für den Patienten kostenfrei durchzuführen.

Zusammenfassung

Resistenz- und Tropismustests gehören zum Standard der diagnostischen Möglichkeiten in der HIV-Behandlung. Primär resistente Virusvarianten sind weiterhin in Regionen mit Zugang zu antiretroviralen Medikamenten bei etwa 10 % der therapienaiven HIV-Patienten nachweisbar. Resistenztests vor ART-Beginn führen zu signifikant besseren Ansprechraten. Durch Resistenztests bei Therapieversagen können die Folgetherapien optimiert werden. Pharmako-ökonomische Modellrechnungen zeigen, dass genotypische Resistenzbestimmungen sowohl bei vorbehandelten als auch bei therapienaiven Patienten kosteneffektiv sind (Sax 2005, Corzillius 2004, Weinstein 2001). Resistenztests werden bereits seit einigen Jahren von nationalen und internationalen Fachgesellschaften empfohlen.

Sowohl geno- als auch phänotypische Verfahren haben eine gute Intra- und Interassay-Reliabilität. Die Resistenzprofile und ihre Interpretation werden immer komplexer. Algorithmen müssen ständig aktualisiert, neue Substanzklassen müssen berücksichtigt werden. Die Festlegung der Schwellenwerte, die mit einer klinisch relevanten Resistenz assoziiert sind, ist entscheidend für den effektiven Einsatz der (virtuellen) Phänotypisierung. Wie für die Resistenzbestimmung hat sich in Deutschland auch für die Tropismusbestimmung im klinischen Alltag die Genotypisierung als Populationssequenzierung durchgesetzt. Das Corezeptortool von geno2pheno bietet eine an klinischen Daten validierte, online verfügbare Möglichkeit der Tropismus-Interpretation.

Abschließend sollte betont werden, dass die antiretrovirale Therapie – selbst unter Berücksichtigung gut interpretierbarer Resistenz- und Tropismustests – nur von erfahrenen HIV-Behandlern im klinischen und auch psychosozialen Kontext des Patienten begonnen, pausiert oder umgestellt werden sollte.

Resistenz-Tabellen

Alle Tabellen basieren auf verschiedenen Regel-basierten Interpretationsrichtlinien, wie z.B. HIV-GRADE (http://www.hiv-grade.de), den Regeln der ANRS – AC 11 Resistance Group (http://www.hivfrenchresistance.org/) und der Drug Resistance Mutations Group of the International AIDS Society-USA (Johnson 2009) sowie den im Text genannten Literaturstellen.

Diese Tabellen dienen zur Orientierung, erheben keinen Anspruch auf Vollständigkeit und ersetzen nicht den Expertenrat für individuelle Therapieentscheidungen.

Tabelle 8: Mutationen, die eine Resistenz gegenüber NRTIs verursachen
NRTIs Resistenzmutationen
AZT T215Y/F (v.a. mit weiteren TAMs)≥ 3 Mutationen aus (M41L, D67N, K70R, L210W, K219Q/E)Q151M (v.a. mit A62V, F77L, F116Y) oder T69SSX (Insertion)*Mögliche Resensitivierung durch K65R, L74V, Y181C, M184V/I
D4T V75M/S/A/TT215Y/F (meist in Kombination mit weiteren TAMs)≥ 3 TAMsQ151M (v.a. mit A62V/F77L/F116Y) oder K65R oder T69SSX (Insertion)*Mögliche Resensitivierung durch L74V, Y181C, M184V/I
ABC M184V + 3 Mutationen aus (M41L, D67N, L74I, L210W, T215Y/F, 219Q/E)≥5 Mutationen aus (M41L, D67N, L74I, L210W, T215Y/F, 219Q/E)K65R oder Y115F oder L74VQ151M (v.a. mit A62V, F77L, F116Y) oder T69SSX (Insertion)*
3TC M184V/I/T oder T69SSX (Insertion)* oder K65R (Resistenz möglich)
FTC M184V/I/T oder T69SSX (Insertion)* oder K65R (Resistenz möglich)
DDI L74V, insbesondere zusammen mit T69D/N oder weiteren TAMsK65RQ151M (v.a. mit A62V, F77L, F116Y) oder T69SSX (Insertion)*T215Y/F und ≥ 2 Mutationen aus (M41L, D67N, K70R, L74I, L210W, K219Q/E)
TDF T69SSX (Insertion)*≥ 3 TAMs mit M41L oder L210W (Resistenz, z. T. nur partiell)≥3-5  Mutationen aus (M41, D67N, T69D/N/S, L210W, Y115F, T215Y/F, K219Q/E)K65R oder K70E/GMögliche Resensitivierung durch M184V/I und eventuell L74V
TAMs = Thymidinanaloga-Mutationen
* T69SSX (T69S plus einer Insertion von ≥2 Aminosäuren (z.B. SS, SG oder SA) zwischen Position 69 und 70) in Kombination T215Y/F und anderen TAMs erzeugt eine hochgradige Resistenz gegenüber allen NRTIs und gegenüber Tenofovir
Tabelle 9: Mutationen, die eine Resistenz gegenüber NNRTIs verursachenFettdruck für Mutationen, die mit einer hochgradigen Resistenz verbunden sind
NNRTIs Resistenzmutationen
Efavirenz L100l oder K101E oder K103N/H/S/T oder V106MV108I (zusammen mit anderen NNRTI-Mutationen)Y181C/(I) oder Y188L/C/(H) oder G190S/A (C/E/Q/T/V)P225H (zusammen mit anderen NNRTI-Mutationen)
Nevirapin A98G (insbesondere für HIV-1 Subtyp C) oder L100lK101E/P/Q oder K 103N/H/S/T oder V106A/M oder V108IY181C/I/V oder Y188C/L/H oder G190A/S (C/E/Q/T/V)
Etravirin ≥ 2*-3 Mutationen aus (V90I, A98G, L100I, K101E/H/P, V106I, E138A/G/K/Q, V179D/F/T, Y181C/I/V, G190A/S, F227C, M230L)*in Kombination mit einer fett gedruckten  Mutation
 Tabelle 10: Mutationen, die eine Resistenz gegenüber PIs verursachen
PIs Relevante Resistenz-Mutationen bzw. Resistenzprofile Weitere Resistenz-assoziierte Mutationen bzw. Profile, die zu einer intermediären Resistenz beitragen können
Saquinavir/r I84V/A oder 48V/M≥ 3 Mutationen aus (L10F/I/M/R/V, K20I/M/R/T, L24I, I62V, G73CST, 82A/F/S/T und L90M)oder≥ 4 Mutationen aus (L10I/R/V, I54V/L, A71V/T, V77I, V82A/ F/S/T und L90M)Mögliche Resensitivierung durch L76V ≥ 2 PRAMs*
Nelfinavir D30N oder l84A/V oder N88S/DL90M V82A/F/S/T und mindestens 2 aus: L10I, M36I, M46l/L, I54V/L/M/T, A71V/T, V77I≥ 2 PRAMs*
Fosamprenavir/r I50VL76V zusammen mit weiteren PI MutationenV32I plus I47V≥ 6 Mutationen aus (L10F/I/V, K20M/R, E35D, R41K, I54V/L/M, L63P, V82A/F/T/S, I84V) oder≥ 3 Mutationen aus (L10I/F/R/V, L33F, M36I, M46I/L, I54L/M/T/V, I62V, L63P, A71I/L/V/T, G73A/C/F/T, V82A/F/S/T, I84V und L90M) oder≥ 3 Mutationen aus L10F/I/V, L33F, M46I/L, I47V, I54L/M/V/A/T/S, A71V, G73S/A/C/T, V82A/F/C/G und L90M ≥ 2 PRAMs*
Lopinavir/r I47A+V32I≥ 3 Mutationen aus (M46I, I47A/V, L50V, I54A/M/V, L76V, V82FATS, I84V)L76V zusammen mit weiteren PI-Mutationen 5-7 Mutationen aus (L10F/I/R/V, K20M/R, L24l, V32I, L33F, M46l/L, I47V/A, I50V, F53L, l54L/T/V, A71l/L/V/T, G73S, V82A/F/T, l84V, L90M)≥ 2 PRAMs*
Atazanavir/r I50L – häufig kombiniert mit A71V -≥ 4 Mutationen aus (L10I/F, K20R/M/I, L24I, V32I, L33I/F/V, M46I, M48V, I54V/M/A, A71V, G73C/S/T/A, V82A/F/S/T, I84V, N88S und L90M)Mögliche Resensitivierung d. L76V N88S≥ 2 PRAMs*
Tipranavir/r ≥ 7 Mutationen/Punkte aus (K20M/R/V, L33F, E35G, N43T, M46L, I47V, I54A/M/V, Q58E, H69K, T74P, V82L/T, N83D und I84V; V82L/T und I84V mit jeweils doppeltem Punktwert)Score >10 aus(I10V (+1), L24I (-2), M36I (+2), N43T (+2), M46L (+1), I47V (+6), I50L/V (-4) I54A/M/V (+3), I54L (-7) Q58E (+5), T74P (+6), L76V (-2), V82L/T (+5), N83D (+4), I84V (+ 2))Mögliche Resensitivierung durch L76VWeitere Resistenz-ass. Mutationen: I54S, I84C 6 Mutationen/Punkte aus (K20M/R/V, L33F, E35G, N43T, M46L, I47V, I54A/M/V, Q58E, H69K, T74P, V82L/T, N83D und I84V; V82L/T und I84V mit jeweils doppeltem Punktwert)Score 3-10 aus(I10V (+1), L24I (-2), M36I (+2), N43T (+2), M46L (+1), I47V (+6), I50L/V (-4) I54A/M/V (+3), I54L (-7) Q58E (+5), T74P (+6), L76V (-2),.V82L/T (+5), N83D (+4), I84V (+ 2))
Darunavir/r ≥ 4 Mutationen aus:V11I, V32I, L33F, I47V, I50V, I54L/M, T74P, L76V, I84V, L89V(mit 32V, I50V, I54M, L76V und I84V als Hauptmutationen mit höherem Gewicht)Weitere Res.-ass. Mutationen: L10F, E35N, I47A, V82L, G48M, V82F ≥ 3 Mutationen aus:V11I, V32I, L33F, I47V, I50V, I54L/M, T74P, L76V, I84V, L89V (mit I50V, I54M, L76V und I84V als Hauptmutationen mit höherem Gewicht)
* Zu den PRAMs (protease inhibitor-resistance associated mutations) zählen die Mutationen L33I/F/V, V82A/F/S/T, I84V und L90M. Sie verursachen eine hohe PI-Kreuzresistenz.
Tabelle 11: Mutationen, die eine Resistenz gegenüber Entry-Inhibitoren verursachen
Fusionsinhibitor Resistenzmutationen
T-20 (Enfuvirtide)

G36A/D/E/S/V oder I37V oder 38A/M/E/K/V oder Q39R

Q40H/K/P/R/T oder N42T/D/S oder N42T+(N43S/N43K)

N43D/KH/S oder L44M oder L44M+ G36S oder L45M/L/Q

CCR5-Antagobisten

Einzelne Mutationen als resistenzassoziiert beschrieben, kein einheitliches Muster

Der Suszeptibilitätsverlust ist bei Doppelmutationen meist höher als bei singulären Mutationen.
Tabelle 12: Mutationen, die eine Resistenz gegenüber Raltegravir verursachen
INIs (Integrase-Inhibitoren) Resistenzmutationen (Resistenzpfade bzw. Schlüsselmutationen) Weitere Mutationen bzw. Resistenzprofile, die zu einer Resistenz führen können
Raltegravir

Q148H/G/K/R/E

N155H

Y143H/R/C

Das Auftreten zusätzlicher Mutationen bewirkt eine Zunahme der Resistenz.

E157Q

T66I und E92Q

Literatur

Andries K, Azijn H, Thielemans T, et al. TMC125, a novel next-generation NNRTI active against nonnucleoside reverse transcriptase inhibitor-resistant HIV type 1. Antimicr Ag Chemoth 2004; 48: 4680-6.

Antoniou T, Park-Wyllie L, Tseng AL. Tenofovir: A nucleotide analog for the management of HIV infection. Pharmacotherapy 2003; 23:29-43.

Bacheler L, Winters B, Harrigan R, et al. Estimation of phenotypic clinical cut-offs for virco®Type HIV-1 through meta analyses of clinical trial and cohort data. Antiviral Therapy 2004; 9:S154. http://www.aegis.com/conferences/hivdrw/2004/Session_6.pdf

Bartmeyer B, Kuecherer C, Houareau C, et al. Prevalence of Transmitted Drug Resistance and Impact of Transmitted Resistance on Treatment Success in the German HIV-1 Seroconverter Cohort. PLoS ONE 5: e12718.

Baxter JD, Mayers DL, Wentworth DN, et al. A randomized study of antiretroviral management based on plasma genotypic antiretroviral resistance testing in patients failing therapy.  AIDS 2000; 14:F83-93.

Baxter JD, Schapiro JM, Boucher CA, et al. Genotypic changes in human immunodeficiency virus type 1 protease associated with reduced susceptibility and virologic response to the protease inhibitor tipranavir. J Virol 2006; 80: 10794-801.

Beerenwinkel N, Däumer M, Oette M, et al. Geno2pheno: estimating phenotypic drug resistance from HIV-1 genotypes. Nucleic Acids Research 2003; 13: 3850-3855.

Bennet DE, Camacho RJ, Ortelea D, Kuritzkes DR, Fleury H., et al. (2009) Drug resistance mutations for surveillance of transmitted HIV – 1 drug resistance : 2009 update. PLoS One: e4724.

Borroto-Esoda K, Parkin N, Miller MD. A comparison of the phenotypic susceptibility profiles of emtricitabine and lamivudine. Antivir Chem Chemother 2007;18:297-300.

Bradshaw D, Malik S, Booth C,,et al. Novel drug resistance pattern associated with the mutations K70G and M184V in human immunodeficiency virus type 1 reverse transcriptase. Antimicrob Agents Chemother 2007, 51:4489-4491.

Braun P, Hoffmann D, Wiesmann, et al. Clinically relevant resensitisation  of protease inhibitors saquinavir and atazanavir by L76V mutation in multidrug-resistant HIV-1 infected patients. Abstract 129, XVI IHDRW 2007, Barbados.

Braun P, Wolf E, Hower M, et al. Genotypic and phenotypic HIV Tropism testing predicts the outcome of Maraviroc regimens. Abstract 47, XVIII IHDRW 2009, Fort Myers/Antiviral Therapy Vol. 14, Suppl. 1, 2009 (p. 51).

Brillant J, Klumpp K, Swallow S, Cammack N, Heilek-Snyder G. In vitro resistance development for a second-generation NNRTI: TMC125. Antivir Ther 2004; 9:S20.

Brumme ZL, Gondrich J, Mayer HB, et al. Molecular and clinical epidemiology of CXCR4-using HIV-1 in a large population of antiretroviral-naive individuals. J Infect Dis 2005; 192:466-474.

Buckton AJ, et al. Increased detection of the HIV-1 reverse transcriptase M184V mutation using mutation-specific minority assays in a UK surveillance study suggests evidence of unrecognised transmitted drug resistance. HIV Medicine 2010, pub ahead of print

Cane P, Chrystie I, Dunn D, et al. Time trends in primary resistance to HIV drugs in the UK: multicentre observational study. BMJ 2005; 331: 1368.

Castagna A, Danise A, Menzo S, et al. Lamivudine monotherapy in HIV-1-infected patients harbouring a lamivudine-resistant virus: a randomized pilot study (E-184V study). AIDS 2006; 20: 795-803.

Chaix ML, Fichou J, Deveau C, et al. Stable frequency of HIV-1 transmitted drug resistance over a decade (1996–2006) in France is likely explained by the increase of chronically treated patients in virological success? Antiviral Therapy 2007; 12:S49 (Abstract 42).

Chapman TM, Plosker GL, Perry CM. Fosamprenavir: a review of its use in the management of antiretroviral therapy-naive patients with HIV infection. Drugs 2004; 64: 2101-24.

Cheng Y, Prusoff WH. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 1973, 22: 3099–108.

Clavel F, Hance AJ. HIV drug resistance. N Engl J Med 2004; 350: 1023-35.

Clumeck N, Van Lunzen J, Chiliade P, et al. ARTEMIS – Efficacy and safety of lopinavir (BID vs QD) and darunavir (QD) in antiretroviral-naive patients 11th EACS, Madrid, 2007, Abstract LBPS7/5.

Coakley E, Benhamida J, Chappey C, et al. An evaluation of tropism profiles and other characteristics among 3988 individuals screened from A4001026, A4001027 (MOTIVATE 1) and A4001028 (MOTIVATE 2) studies for maraviroc. Abstract 8, 2nd Int Worksh Targ HIV Entry 2006, Boston, MA.

Coakley E, Parkin N. Contribution of non-thymidine analog nucleoside RT inhibitor associated mutations to phenotypic hypersusceptibility to efavirenz. Abstract 704, 12th CROI 2005a, Boston, USA. Abstract: http://www.retroconference.org/2005/cd/Abstracts/25329.htm

Coakley E, Mass M, Parkin N. Atazanavir resistance in a protease inhibitor-naïve patient treated with atazanavir/ritonavir associated with development of high-level atazanavir resistance and the N88S mutation in protease. Abstract 716, 12th CROI 2005b, Boston, USA.

Cohen CJ, Hunt S, Sension M, et al. A randomized trial assessing the impact of phenotypic resistance testing on antiretroviral therapy. AIDS 2002; 16: 579-88.

Colonno R, Rose R, McLaren C, et al. Identification of I50L as the signature atazanavir-resistance mutation in treatment-naive HIV-1-infected patients receiving ATV-containing regimens. J Infect Dis 2004a; 189:1802-10.

Colonno RJ, McLaren C, Kelleher T. Pathways to Atazanavir resistance in treatment-experienced patients on Atazanavir containing regimens. Abstract/Poster 3.1, 2nd European HIV Drug Resistance Workshop 2004b, Rome, Italy.

Colonno RJ, Friborg J, Rose RE, et al. Identification of amino acid substitutions correlated with reduced atazanavir susceptibility in patients treated with atazanavir-containing regimens. Antiviral Ther 2002; 7:S4. Abstract 4.

Conradie F, Sanne I, Venter W, et al. Failure of lopinavir-ritonavir containing regimen in an antiretroviral-naive patient. AIDS 2004; 18:1041-1085.

Cooper D, Hall D, Jayaweera D, et al. Baseline phenotypic susceptibility to tipranavir/ritonavir is retained in isolates from patients with multiple protease inhibitor experience (BI 1182.52). Abstract 596, 10th CROI 2003, Boston, USA.

Cooper D et al. Results from BENCHMRK-1, a phase III study evaluating the efficacy and safety of MK-0518, a novel HIV-1 integrase inhibitor, in patients with triple-class resistant virus. Abstract 105aLB, 14th CROI 2007, Los Angeles, USA.

Corzillius M, Mühlberger N, Sroczynski G, et al. Cost effectiveness analysis of routine use of genotypic antiretroviral resistance testing after failure of antiretroviral treatment for HIV. Antivir Ther 2004; 9:27-36.

Cozzi-Lepri A et al. Rate of accumulation of thymidine analogue mutations in patients continuing tor receive viroloically failing regimens containing zidovudine or stavudine: implications for antiretrovirla therapy programs in resource limited settings. J Infectious Dis 2009; 200: 687-97

Craig C, Goddard C, Whittaker L, et al. HIV-1 genotype and phenotype during dual therapy (NV15436 sub-study). Abstract 103, 7th ECCATH 1999, Lisbon, Portugal.

Craig C, Lewis M, Simpson, et al.  Week 48 results from the phase III study A4001026 (MERIT) – ‘time to loss of virological response’ virology analysis of failures in the enhanced Trofile – censored populations. Abstract 46, XVIII IHDRW 2009, Fort Myers/Antiviral Therapy Vol. 14, Suppl. 1, 2009 (p. 50)

Croom KF, Keam SJ. Tipranavir: a ritonavir-boosted protease inhibitor. Drugs 2005; 65: 1669-77.

DAIG, Deutsche AIDS-Gesellschaft. Deutsch-Österreichische Leitlinien zur antiretroviralen Therapie der HIV-1-Infektion, Stand März 2010. http://www.daignet.de/site-content/hiv-therapie/leitlinien-1

da Silva D, Van Wesenbeeck L, Breilh D, et al. HIV-1 resistance patterns to integrase inhibitors in antiretroviral-experienced patients with virological failure on raltegravir-containing regimens. J Antimicrob Chemother. 2010; 65(6):1262-9.

DeJesus E, Cohen C, Elion R, et al. First report of raltegravir (RAL, MK-0518) use after virologic rebound on elvitegravir (EVT, GS 9137). Abstract TUPEB032, 4th IAS Conference 2007, Sydney, Australia.

Delaugerre C, Flandre P, Chaix ML, et al. Protease gene mutations in a trial comparing first-line lopinavir/ritonavir monotherapy to lopinavir/ritonavir + zidovudine/lamivudine (MONARK-TRIAL). Antiviral Therapy 2007; 12: S84 (Abstract 75).

Delaugerre C, Flandre P, Chaix ML, et al. Protease inhibitor resistance analysis in the MONARK trial comparing first-line lopinavir-ritonavir monotherapy to lopinavir-ritonavir plus zidovudine and lamivudine triple therapy. Antimicrob Agents Chemother. 2009; 53(7):2934-9.

Delaugerre C, Flandre P, Marcelin AG, et al. National survey of the prevalence and conditions of selection of HIV-1 reverse transcriptase K70E mutation. J Med Virol 2008, 80:762-765.

De Mendoza C, Gallego O, Soriano V. Mechanisms of resistance to antiviral drugs – clinical implications. AIDS Rev 2002; 4: 64-82.

De Mendoza C, Rodriguez C, Corral A, et al. Evidence for a different transmission efficiency of viruses with distinct drug-resistant genotypes. Abstract 130, XII Int HIV Drug Resistance Workshop 2003, Los Cabos, Mexico. http://www.mediscover.net/Journals_PDF/Session5.pdf

De Mendoza C, Rodriguez C, Colomina J, et al. Resistance to nonnucleoside reverse-transcriptase inhibitors and prevalence of HIV type 1 non-B subtypes are increasing among persons with recent infection in Spain. Clin Infect Dis 2005a; 41: 1350-4.

De Mendoza C, Rodriguez C, Corral A, et al. Long-term persistence of drug resistance mutations after HIV seroconversion. Abstract PE3.5/3. 10th European AIDS Conference (EACS) 2005b, Dublin, Ireland.

De Meyer S, Van Marck H, Veldemann J, et al. Antiviral activity of TMC114, a potent next-generation protease inhibitor, against >4000 recent recombinant clinical isolates exhibiting a wide range of (protease inhibitor) resistance profiles. Antiviral Therapy 2003; 8:S20

De Meyer S, Azijn H, Surleraux D, et al. TMC114, a novel HIV type 1 protease inhibitor active against protease inhibitor-resistant viruses, including a broad range of clinical isolates. Antimicrob Agents Chemother 2005; 49:2314-21.

De Meyer S, Cao-Van K, Lathouwers E, Vangeneugden T, de Bethune M. Phenotypic and genotypic profiling of TMC114, lopinavir and tipranavir against PI-resistant HIV-1 clinical isolates. Abstract 43, 4th European HIV Drug Resistance Workshop 2006a, Monte Carlo, Monaco.

De Meyer S, Dierynck I, Lathouwers E, et al. Identification of mutations predictive of a diminished response to darunavir/ritonavir: Analysis of data from treatment-experienced patients in POWER 1, 2, 3 and DUET-1 and 2. Abstract 54, 6th Eur HIV Drug Resistance Workshop 2008, Budapest, Hungary.

De Meyer S, Hill A, De Baere I, et al. Effect of baseline susceptibility and on-treatment mutations on TMC114 and control PI efficacy: preliminary analysis of data from PI-experienced patients from POWER 1 and POWER 2. Abstract 157, 13th CROI 2006b, Denver, Colorado, USA.

De Meyer S, Descamps D, Van Baelen B, et al. Confirmation of the negative impact of protease mutations I47V, I54M, T74P and I84V and the positve impact of protease mutation  V82A on virological response to darunavir/ritonavir. Abstract 126, XVIII IHDRW, 2009, Fort Myers.

Deval J, White KL, Miller MD, et al. Mechanistic basis for reduced viral and enzymatic fitness of HIV-1 reverse transcriptase containing both K65R and M184V mutations. J Biol Chem 2004;279:509-16.

Doyon L, Tremblay S, Bourgon L, Wardrop E, Cordingley MG. Selection and characterization of HIV-1 showing reduced susceptibility to the non-peptidic protease inhibitor tipranavir. Antiviral Res 2005; 68: 27-35.

Drake JW. Rates of spontaneous mutation among RNA viruses. PNAS 1993; 90:4171-4175.

Durant J, Clevenbergh P, Halfon P, et al. Drug-resistance genotyping in HIV-1 therapy: the VIRADAPT randomised controlled trial. Lancet 1999; 353:2195-99.

Eberle J, Goebel FD, Postel N, et al. Amino acid changes in the HIV-1/gp41 HR1 region associated with ongoing viral replication selected by T-20 (enfuvirtide) therapy. Abstract/Poster 43, 3rd European Conference on Viral Diseases 2004, Regensburg, Germany.

Eron J, Durant J, Poizot, et al. Activity of a next generation integrase inhibitor (INI), S/GSK 1349572, in subjects with HIV exhibiting raltegravir resistence : initial results of VIKING study (ING 112961). Abstract MOAB0105, 18th IAC 2010, Vienna,  Austria.

Eron JJ, Benoit SL, Jemsek J, et al. Treatment with lamivudine, zidovudine, or both in HIV-positive patients with 200 to 500 CD4+ cells per cubic millimeter. N Engl J Med 1995; 333:1662-1669.

Eron J Jr, Yeni P, Gathe J Jr, et al. The KLEAN study of fosamprenavir-ritonavir versus lopinavir-ritonavir, each in combination with abacavir-lamivudine, for initial treatment of HIV infection over 48 weeks: a randomised non-inferiority trial. Lancet 2006;368:476-482.

Eron  J, Kumar P, Lazzarin A, et al. DTG in subjects with HIV exhibiting RAL resistance: Functional monotherapy results of VIKING study cohort II. Abstract 151LB, 18th CROI, 2011, Boston, MA.

Flandre P, Parkin NT, Petropoulos C, et al. Competing occurrence and mutation pathways of nucleoside reverse transcriptase inhibitor associated mutations. Abstract 645, 11th CROI 2004, San Francisco, CA.

Fransen S, Gupta S, Danovich R, et al. Loss of raltegravir susceptibility in treated patients is conferred by multiple non-overlapping genetic pathways. Abstract 7, XVII International HIV Drug Resistance Workshop 2008; Sitges, Spain.

Frentz D. Recent dynmics of transmitted drug resistance in Europe: SPREAD Programme 2006-2007. Abstract O-13. 9th European Workshop on HIV & Hepatits Treatment Strategies  & Antiviral Drug Resistance, 2011. Paphos, Cyprus

Friend J, Parkin N, Liegler T, et al. Isolated lopinavir resistance after virological rebound of a ritonavir/lopinavir-based regimen. AIDS 2004; 18:1965-70.

Gallant JE, Rodriguez A, Weinberg W, et al. Early non-response to tenofovir DF + abacavir and lamivudine in a randomized trial compared to efavirenz (EFV) + ABC and 3TC: ESS30009 unplanned interim analysis. LB H-1722a, 43rd ICAAC 2003, Chicago, USA.

Garcia-Lerma JG, MacInnes H, Bennett D, et al. A novel genetic pathway of HIV type 1 resistance to stavudine mediated by the K65R mutation. J Virol. 2003; 77:5685-5693. http://intapp.medscape.com/px/medlineapp/getdoc?pmi=12719561&cid=med

Garcia-Gasco P, Maida I, Blanco F, et al. Episodes of low-level viral rebound in HIV-infected patients on antiretroviral therapy: frequency, predictors and outcome. J Antimicrob Chemother 2008; 61:699-704.

Garrido C, Roulet V, Chueca N, et al. Evaluation Evaluation of eight different bioinformatics tools to predict viral tropism in different human immunodeficiency virus type 1 subtypes. J Clin Microbiol. 2008, 46:887-91.

Gathe J, da Silva BA, Loutfy M et al. Primary efficacy results at week 48: phase 3, randomized, open-label study of lopinavir/ritonavir tablets once daily versus twice daily co-administered with tenofovir DF + emtricitabine in antiretroviral-naive HIV-infected subjects. Abstract 775, 15th CROI 2008, Boston.

Gatell JM. The use of integrase inhibitors in treatment-experienced patients. Eur J Med Res. 2009;14 Suppl 3:30-5.

Gianotti N, Seminari E, Guffanti M, et al. Evaluation of atazanavir Ctrough, atazanavir genotypic inhibitory quotient, and baseline HIV genotype as predictors of a 24-week virological response in highly drug-experienced, HIV-infected patients treated with unboosted atazanavir. New Microbiol 2005; 28: 119-25.

Goethals O, Clayton R, Wagemans E, et al. Resistance mutations in HIV-1 integrase selected with raltegravir or elvitegravir confer reduced susceptibility to a diverse panel of integrase inhibitors. Abstract 9, XVII International HIV Drug Resistance Workshop 2008, Sitges.

Gonzalez LM, Brindeiro RM, Aguiar RS, et al. Impact of nelfinavir resistance mutations on in vitro phenotype, fitness, and replication capacity of HIV type 1 with Subtype B and C Proteases. Antimicr Agents Chemother 2004; 48: 3552-55.

Goodman D, Hluhanich R, Waters J, et al. Integrase inhibitor resistance involves complex interactions among primary and secondary resistance mutations: a novel mutation L68V/I associates with E92Q and increases resistance. Abstract 13, XVII Int HIV Drug Resistance Workshop 2008; Sitges.

Grant GM, Liegler T, Spotts G, et al. Declining nucleoside reverse transcriptase inhibitor primary resistance in San Francisco, 2000-2002. Abstract 120, XII International HIV Drug Resistance Workshop, 2003, Los Cabos, Mexico.

Grossman Z, Istomin V, Averbuch D, et al.  Genetic variation at NNRTI resistance-associated positions in patients infected with HIV-1 subtype C. AIDS 2004a; 18: 909-15.

Hackett Jr J, Harris B,  Holzmayer V, et al. Naturally occurring polymorphisms in HIV-1 Group M, N, and O integrase: implications for integrase inhibitors, Abstract 872, 15th CROI 2008, Boston, :A, USA.

Haddad M, Stawiski E, Benhamida J, Coakley, et al. Improved genotypic algorithm for predicting Etravirine susceptibility:Comprehensive list of mutations identified through correlation with matched phenotype. Abstract 574, 17th CROI 2010, San Francisco, CA, USA.

Harrigan PR, Stone C, Griffin P, et al. Resistance profile of the HIV type 1 reverse transcriptase inhibitor abacavir (1592U89) after monotherapy and combination therapy. J Infect Dis 2000; 181:912-920.

Harrigan P, McGovern R, Dong W, et al. Screening for HIV tropism using population based V3 genotypic analysis: a retrospective virological outcome analysis using stored plasma screening samples from MOTIVATE-1. Abstract 15, XVIII IHDRW 2009, Fort Myers/Antiviral Therapy 14, Suppl. 1 (p. 17).

Hatano H, Lampiris H, Huang W, et al. Virological and immunological outcomes in a cohort of patients failing integrase inhibitors. Abstract 10, XVII International HIV Drug Resistance Workshop 2008, Sitges.

Hazuda DJ, Miller MD, Nguyen BY, Zhao J for the P005 Study Team. Resistance to the HIV-integrase inhibitor raltegravir: analysis of protocol 005, a Phase II study in patients with triple-class resistant HIV-1 infection. Abstract 8, XVI IHDRW 2007, Barbados,West Indies.

Heera J, Saag M, Ive P, et al. Virological Correlates associated with treatment failure at week 48 in the phase 3 study of maraviroc in treatment-naive patients. Abstract 40LB, 15th CROI, 2008; Boston, Massachusetts.

Hunt PW, Harrigan PR, Huang W, et al. Prevalence of CXCR4 tropism among antiretroviral-treated HIV-1-infected patients with detectable viremia. J Infect Dis 2006;194:926-930.

Jacobsen H, Yasargil K, Winslow DL, et al. Characterization of HIV type 1 mutants with decreased sensitivity to proteinase inhibitor Ro 31-8959. Virology 1995; 206:527-534.

Jacobson J, Thompson M, Fischl M, et al. Phase 2a study of PRO 140 in HIV-infected adults. Abstract H-1229, 49th ICAAC 2009, San Francisco, CA.

Jayaraman G, Goedhuis N, Brooks J, et al. Trends in transmission of HIV-1 drug resistance among newly diagnosed, antiretroviral treatment naive HIV-infected individuals in Canada (1999-2003). Reviews in Antiviral Therapy 2006; 4: 50 (Abstract 50).

Jimenez JL, Resino S, Martinez-Colom A, et al. Mutations at codons 54 and 82 of HIV protease predict virological response of HIV-infected children on salvage lopinavir/ritonavir therapy. J Antimicrob Chemother 2005.

Johnson JA, Li JF, Wei X, Lipscomb J, Smith A, Heneine H. Sensitive testing demonstrates a high prevalence of transmitted drug resistance among conventionally genotyped wildtype HIV-1 infections. Antiviral Therapy 2007a; 12 (5):S46 (Abstract 39).

Johnson VA, Brun-Vézinet F, Bonaventura C, et al. Update of the Drug Resistance Mutations in HIV-1: 2009. Top HIV Med 2009, 17:138-145. Article: http://www.iasusa.org/resistance_mutations/mutations_figures.pdf

Kagan RM, Shenderovich MD, Heseltine PN, Ramnarayan K. Structural analysis of an HIV-1 protease I47A mutant resistant to the protease inhibitor lopinavir. Protein Sci 2005; 14: 1870-8.

Katlama C, Campbell T, Clotet B, et al. DUET-2: 24 week results of a phase III randomised double-blind trial to evaluate the efficacy and safety of TMC125 versus placebo in 591 treatment-experienced HIV-1 infected patients. Abstract WESS204:2, 4th IAS 2007, Sydney.

Kempf DJ, Isaacson JD, King MS, et al. Identification of genotypic changes in HIV protease that correlate with reduced susceptibility to the protease inhibitor lopinavir among viral isolates from protease inhibitor-experienced patients. J Virol 2001, 75:7462-9.

Kohlbrenner V, Hall D, Schapiro J, et al. Development of a tipranavir mutation score: analysis of protease mutations associated with phenotypic drug susceptibility and antiviral response in Phase II clinical trials. Antivir Ther 2004;9:S143 (Abstract 19).

Kuecherer C, Poggensee C, Korn K, et al. High level of resistant HIV-1 in newly diagnosed patients both with documented seroconversion and with unknown date of infection. Abstract 10, 4th European HIV Drug resistance workshop 2006, Monte Carlo, France.

Lafeuillade A, Tardy JC. Stavudine in the face of cross-resistance between HIV-1 nucleoside reverse transcriptase inhibitors: a review. AIDS Rev 2003, 5:80-6.

Lalezari J, Sloan L, Dejesus E, et al. Potent antiviral activity of S/GSK1349572, a next generation integrase inhibitor (INI), in INI-naïve HIV-1-infected patients. Abstract TUAB105, 5th IAS  2009, Cape Town, South Africa.

Landman R, Descamps D, Peytavin G, et al. Early virologic failure and rescue therapy of tenofovir, abacavir, and lamivudine for initial treatment of HIV-1 infection: TONUS study. HIV Clin Trials 2005; 6: 291-301.

Landovitz R, Faetkenhauer G, Hoffmann C, et al. Characterization of susceptibility profiles for the CCR5 antagonist vicriviroc in treatment-naive HIV-infected subjects. Abstract 18, XV International HIV Drug Resistance Workshop 2006, Sitges.

Lanier ER, Irlbeck D, Liao Q et al. Emergence of resistance-associated mutations over 96 weeks of therapy in subjects initiating ABC/3TC + d4T, EFV or APV/r. Abstract H-910, 43rd ICAAC 2003, Chicago, USA.

Larder B, de Vroey V, Dehertogh P, et al. Predicting HIV-1 phenotypic resistance from genotype using a large phenotype-genotype relational database. Abstract 106, 7th ECCATH 1999, Lisbon, Portugal.

Larder BA, Kemp SD. Multiple mutations in HIV-1 reverse transcriptase confer high-level resistance to zidovudine (AZT). Science 1989, 246:1155-1158.

Larder BA, Bloor S. Analysis of clinical isolates and site-directed mutants reveals the genetic determinants of didanosine resistance. Antivir Ther 2001; 6:38.

Lataillade M , Molina J M, Thiry I et al. The CASTLE study 48 week results: the impact of HIV subtypes and baseline resistance on treatment outcomes and the emergence of resistance. Antiviral Therapy 2008; 13 Suppl 3: A135 (Abstract 123)

Lewis M, Simpson P, Fransen S, et al. CXCR4-using virus detected in patients receiving maraviroc in the Phase III studies MOTIVATE 1 and 2 originates from a pre-existing minority of CXCR4-using virus. Antiviral Therapy 2007; 12:S65 (Abstract 56).

Li J, Paredes R, Ribaudo H et al, Minority HIV-1 drug resistance mutations and the risk of initial ART failure: A systematic review and pooled analysis. Abstract 614, 18th CROI, 2011, Boston.

Little SJ, Holle S, Routy JP, et al. Antiretroviral-drug resistance among patients recently infected with HIV. N Engl J Med 2002; 347:385-394. http://content.nejm.org/cgi/content/short/347/6/385

Loveday C, Devereux H, Huckett L, Johnson M. High prevalence of multiple drug resistance mutations in a UK HIV/AIDS patient population. AIDS 1999; 13: 627-628.

Loutfy MR, Montaner JSG, Raboud JM, et al. Genotypic resistance assay for entire gp-41 sequence with identification of gp-41 polymorphisms in enfuvirtide-naive patients and new gp-41 mutations in patients failing enfuvirtide. Abstract WeOrB1292, 15th IAC 2004, Bangkok, Thailand.

Lu J, Sista P, Giguel F, Greenberg M, Kuritzkes DR. Relative replicative fitness of HIV type 1 mutants resistant to enfuvirtide. J Virol 2004; 78: 4628-37.

Maguire M, Shortino D, Klein A, et al. Emergence of resistance to protease inhibitor amprenavir in HIV type 1-infected patients: selection of four alternative viral protease genotypes and influence of viral susceptibility to coadministered reverse transcriptase nucleoside inhibitors. Antimicrob Agents Chemother 2002; 46:731–8.

Malet I, Delelis O, Valantin MA, et al. Mutations associated with failure of raltegravir treatment affect integrase sensitivity to the inhibitor in vitro. Antimicrob Agents Chemother 2008;52:1351-8.

Marcelin AG, Lamotte C, Delaugerre C, et al. Genotypic inhibitory quotient as predictor of virological response to ritonavir-amprenavir in HIV type 1 protease inhibitor-experienced patients. Antimicrob Agents Chemother 2003; 47: 594-600.

Marcelin AG, Flandre P, de Mendoza C, et al. Clinical validation of saquinavir/ritonavir genotypic resistance score in protease-inhibitor-experienced patients. Antivir Ther. 2007a; 12:247-52.

Marcelin AG et al. Mutations associated with response to boosted tipranavir in HIV-1-infected PI-experienced patients. Abstract 612, 14th CROI 2007b, Los Angeles, California.

Markowitz M, Mohri H, Mehandru S, et al. Infection with multidrug resistant, dual-tropic HIV-1 and rapid progression to AIDS: a case report. Lancet 2005; 365: 1031-8.

Markowitz M, Nguyen BY, Gotuzzo E, et al.  Rapid onset and durable antiretroviral effect of raltegravir (MK-0518), a novel HIV-1 integrase inhibitor, as part of combination ART in treatment-naive HIV-1 infected patients: 48-week results. Abstract TUAB104, 4th IAS 2007, Sydney, Australia.

Masquelier B, Race E, Tamalet C, et al. Genotypic and phenotypic resistance patterns of HIV type 1 variants with insertions or deletions in the reverse transcriptase (RT): multicenter study of patients treated with RT inhibitors. Antimicrob Agents Chemother 2001, 45:1836-42.

Masquelier B., Assoumou KL, Descamps D, et al. Clinically validated mutation scores for HIV-1 resistance to fosamprenavir/ritonavir. J Antimicrob Chemother 2008, 61:1362-1368.

Mayers D, Leith J, Valdez H, et al. Impact of three or four protease mutations at codons 33, 82, 84 and 90 on 2 week virological responses to tipranavir, lopinavir, amprenavir and saquinavir all boosted by ritonavir in Phase 2B trial BI 1182.51. Antivir Ther 2004;9:S163.

McColl D, Parkin NT, Miller M, Mertenskötter T. Charakterisierung von klinischen Virus-Isolaten mit L74V oder K65R in einer großen Resistenzdatenbank. Abstract P126, 10. Deutscher und 16. Österreichischer AIDS Kongress 2005, Vienna, Austria.

McColl DJ, Fransen S, Gupta S, et al. Resistance and cross-resistance to first generation integrase inhibitors: insights from a phase II study of elvitegravir (GS-9137). Antiviral Therapy 2007; 12:S11. Abstract 9.

McNicholas P. Clonal analysis of the gp120 V3 loop from clinical isolates displaying phenotypic resistance to Vicriviroc. Abstract H-906, 49th  ICAAC 2009, San Francisco, CA.

Melby T, Despirito M, Demasi R, et al. HIV-1 Co-receptor tropism in triple-class-experienced patients: baseline correlates and relationship to enfuvirtide response. Abstract 223, 13th CROI 2006, Denver, Colorado, USA.

Metzner KJ, Rauch P, von Wyl V, et al. Prevalence of minority quasispecies of drug resistant HIV-1 in patients with primary HIV-1 infection in Zurich in the years 2002–2006. Antiviral Therapy 2007a; 12:S47 (Abstract 40).

Metzner KJ1, Walter H, P Rauch P, et al. The K65R mutation is rarely detected as a minority quasispecies in therapy-naive, chronically HIV-1-infected persons. Antiviral Therapy 2007b; 12:S52 (Abstract 45).

Meyer PR, Matsuura SE, Schinazi RF, So AG, Scott WA. Differential removal of thymidine nucleotide analogues from blocked DNA chains by HIV reverse transcriptase in the presence of physiological concentrations of 2’-deoxynucleoside triphosphates. Antimic Agents Chemother 2000; 44:3465-72.

Miller MD, Danovich RM, Ke Y, et al. Longitudinal analysis of resistance to HIV-1 integrase inhibitor raltegravir: results from P005 a phase II study in treatment-experienced patients. Abstract 6, 17th IHDRW 2008, Sitges, Spain.

Miller MD, Margot N, Lu B, et al. Genotypic and phenotypic predictors of the magnitude of response to tenofovir disoproxil fumarate treatment in antiretroviral-experienced patients. J Infect Dis 2004; 189:837-46.

Miller MD, Margot NA, Hertogs K, Larder B, Miller V. Antiviral activity of tenofovir (PMPA) against nucleoside-resistant clinical HIV samples. Nucleosides Nucleotides Nucleic Acids 2001; 20:1025-8.

Miller MD, White KL, Petropoulos CJ, et al. Decreased replication capacity of HIV-1 clinical isolates containing K65R or M184V RT mutations. Abstract 616, 10th CROI 2003, Boston, USA.

Mills A, P. Cahn P, Grinsztejn B, et al. DUET-1: 24 week results of a phase III randomised double-blind trial to evaluate the efficacy and safety of TMC125 versus placebo in 612 treatment-experienced HIV-1 infected patients. Abstract WESS204:1, 4th IAS 2007, Sydney.

Mink M, Mosier SM, Janumpalli S, et al. Impact of HIV type 1 gp41 amino acid substitutions selected during enfuvirtide treatment on gp41 binding and antiviral potency of enfuvirtide in vitro. J Virol 2005, 79: 12447-12454. Abstract: http://jvi.asm.org/cgi/content/abstract/79/19/12447

Mo H, King MS, King K, et al. Selection of resistance in protease inhibitor-experienced, HIV type 1-infected subjects failing lopinavir- and ritonavir-based therapy: Mutation patterns and baseline correlates. J Virol 2005, 79: 3329-38. http://jvi.asm.org/cgi/content/abstract/79/6/3329

Molina J-M, Andrade-Villanueva J, Echevarria J, et al. Once-daily atazanavir/ritonavir versus twice-daily lopinavir/ritonavir, each in combination with tenofovir and emtricitabine, for management of antiretroviral-naive HIV-1-infected patients: 48 week efficacy and safety results of the CASTLE study. Lancet 2008, 372: 646-655

Molina JM, Cordes C, Ive P, et. al. Efficacy and safety of TMC278 in treatment-naïve, HIV-infected patients: week 96 data from TMC278-C204.  Journal of the International AIDS Society 2008, 11(Suppl 1):P2

Mori J, Lewis M, Simpson P, et al. Characterization of maraviroc resistance in patients failing treatment with CCR5-tropic virus in MOTIVATE 1 and MOTIVATE. Abstract 51, VI. EHDRW 2008.

Mori J, Mosley M, Lewis M, et al. Characterization of maraviroc resistance in patients failing treatment with CCR5-tropic virus in MOTIVATE 1 and MOTIVATE 2. Abstract 10, 16th IHDRW 2007; Barbados, West Indies.

Moyle GJ, Wildfire A, Mandalia S, et al. Epidemiology and predictive factors for chemokine receptor use in HIV-1 infection. J Inf Dis 2005;191:866-872.

Mueller SM,  Daeumer M, Kaiser R, et al. Susceptibility to saquinavir and atazanavir in highly protease inhibitor (PI) resistant HIV-1 is caused by lopinavir-induced drug resistance mutation L76V. Antiviral Therapy 2004; 9:S44 (Abstract 38).

Naeger LK, Margot NA, Miller MD. Increased drug susceptibility of HIV-1 reverse transcriptase mutants containing M184V and zidovudine-associated mutations: analysis of enzyme processivity, chain-terminator removal and viral replication. Antivir Ther 2001; 6:115-26.

Nettles RE, Kieffer TL, Kwon P, et al. Intermittent HIV-1 viremia (Blips) and drug resistance in patients receiving HAART. JAMA 2005, 293:817-829.

Nettles RE, Kieffer TL, Simmons RP, et al. Genotypic resistance in HIV-1-infected patients with persistently detectable low-level viremia while receiving highly active antiretroviral therapy. Clin Infect Dis 2004, 39:1030-1037.

Nijhuis M, Schuurman R, de Jong D, et al. Increased fitness of drug resistant HIV-1 protease as a result of acquisition of compensatory mutations during suboptimal therapy. AIDS 1999; 13:2349-59.

Nkengafac AD, Tina S, Sua F, et al. Molecular epidemiology and prevalence of drug resistance-associated mutations in newly diagnosed HIV-1 patients in Cameroon. Antiviral Therapy 2007; 12:S50 (Abstract 43).

Obermeier MJ, Berg T, Sichtig N, et al. Determination of HIV-1 co-receptor usage in German patients – comparison of genotypic methods with the TROFILE phenotypic assay. Abstract P201, 9th International Congress on Drug Therapy in HIV Infection.

Oette M. HAART in patients with primary HIV drug resistance: The RESINA Study (oral presentation). 2. HIV Resistenzworkshop 2008, Berlin, Germany.

Oette M, Kaiser R, Daumer M, et al. Primary HIV drug resistance and efficacy of first-line antiretroviral therapy guided by resistance testing. J AIDS 2006; 41: 573-81.

S Palleja, C Cohen, J Gathe, et al. Efficacy of TBR 652, a CCR5 antagonist, in HIV-1-infected, ART-experienced, CCR5 antagonist-naive patients. Abstract 53, 17th CROI 2010, San Francisco, CA, USA. February 16-19, 2010.

Pao D, Andrady U, Clarke J, et al. Long-term persistence of primary genotypic resistance after HIV-1 seroconversion. J AIDS 2004; 37: 1570-3.

Parikh UM, Zelina S, Sluis-Cremer N, Mellors JW. Molecular mechanisms of bidirectional antagonism between K65R and thymidine analog mutations in HIV-1 reverse transcriptase. AIDS 2007;21:1405-14.

Parkin NT, Chappey C, Petropoulos CJ. Improving lopinavir genotype algorithm through phenotype correlations: novel mutation patterns and amprenavir cross-resistance. AIDS 2003; 17: 955-962.

Pellegrin I, Breilh D, Coureau G, et al. Interpretation of genotype and pharmacokinetics for resistance to fosamprenavir-ritonavir-based regimens in antiretroviral-experienced patients. Antimicrob Agents Chemother 2007;51:1473-80.

Pellegrin I, Breilh D, Ragnaud JM, et al. Virological responses to atazanavir-ritonavir-based regimens: resistance-substitutions score and pharmacokinetic parameters (Reyaphar study). Antivir Ther 2006; 11:421-9.

Perelson AS, Neumann AU, Markowitz M, et al. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 1996; 271:1582-1586.

Petropoulos CJ, Parkin NT, Limoli KL, et al. A novel phenotypic drug susceptibility assay for HIV type 1. Antimicrob Agents Chemother 2000; 44:920-8.

Portsmouth S, Chapman D, Lewis M, et al. Virologic outcome by V3 loop genotypic population sequencing and 454  “deep” sequencing  in clade B and non-B virus in Merit at 48 and 96 weeks, Abstract TUPE 0134, 18th IAC 2010b, Vienna, Austria.

Portsmouth S, Valluri S, Daeumer M, et al. Population and ultra-deep sequencing for tropism determination are correlated with Trofile ES: genotypic re-analysis of the A4001078 maraviroc study. Journal of the International AIDS Society 2010a, 3(Suppl 4):P128.

Prosperi MC, Bracciale L, Fabbiani M, et al. Comparative determination of HIV-1 co-receptor tropism by Enhanced Sensitivity Trofile, gp120 V3-loop RNA and DNA genotyping. Retrovirology 2010; 7:56.

Recordon-Pinson P, O Peuchant O, S Capdepont S, et al. HIV-1 transmission dynamics in recent seroconverters: relationship with transmission of drug resistance and viral diversity. Antiviral Therapy 2007; 12:S43 (Abstract 36).

Reeves JD, Su Z, Krambrink A et al. Response to vicriviroc in HIV-infected, treatment-experienced individuals using an enhanced version of the Trofile HIV co-receptor tropism assay [Trofile (ES)]: reanalysis of ACTG 5211 results. 17th IHDRW, Sitges, 2008, Abstract 88

Reuter S, Oette M., Kaiser R, et al. First-line HAART guided by genotypic resistance testing – long-term follow-up data from the RESINA-study. Abstract MOPDA201, XVII  IAS 2008; Mexico City, Mexico.

Rimsky L, Eron J, Clotet B, et al. Characterization of the resistance profile of TMC278: 48-week analysis of the phase 3 studies ECHO and THRIVE. Abstract H-1810, 50th ICAAC 2010, Boston.

Rockstroh J, Lennox J, DeJesus E, et al. Raltegravir demonstrates durable virologic suppression and superior immunologic response with a favorable metabolic profile through 3 years of treatment: 156-week results from STARTMRK. Abstract 542, 18th CROI, 2011, Boston, MA.

Ross L, Parkin L, Chappey C, et al. HIV clinical isolates containing mutations representative of those selected after first line failure with unboosted GW433908 remain sensitive to other protease inhibitors. Abstract 19, XII Int HIV Drug Resist Workshop 2003, Los Cabos, Mexico.

Sato A, Seki T, Kobayashi M, et al. In vitro passage of drug resistant HIV-1 against a next generation integrase inhibitor (INI), S/GSK1349572. Abstract H-932/415, 49th ICAAC, San Francisco, CA.

Sax PE, Islam R, Walensky RP, et al. Should resistance testing be performed for treatment-naive HIV-infected patients? A cost-effectiveness analysis. Clin Infect Dis 2005; 41: 1316-23.

Schnell T, Schmidt B, Moschik G, et al. Distinct cross-resistance profiles of the new protease inhibitors amprenavir, lopinavir, and atazanavir in a panel of clinical samples. AIDS 2003; 17:1258-61.

Schuurmann R, Nijhuis M, van Leeuwen R, et al. Rapid changes in human immodeficiency virus typ 1 RNA load and appearance of drug-restistant virus populations in persons treated with lamivudine (3TC). J Inf Dis1995, 171: 1411–1419.

Shafer RW, Iversen AK, Winters MA, et al. Drug resistance and heterogeneous long-term virologic responses of HIV type 1-infected subjects to zidovudine and didanosine combination therapy. J Infect Dis 1995; 172:70-78.

Shafer R. Genotypic Testing for HIV-1 Drug Resistance (2003). http://hivdb.stanford.edu/modules/lookUpFiles/pdf/GenotypicResistance.pdf

Shulman NS, Bosch RJ, Mellors JW, Albrecht MA, Katzenstein DA. Genetic correlates of efavirenz hypersusceptibility. AIDS 2004; 18: 1781-5.

Smith K,  Fine D, Patel P, et al.Efficacy and Safety of Abacavir/Lamivudine Compared to Tenofovir/Emtricitabine in Combination with Once-daily Lopinavir/Ritonavir through 48 Weeks in the HEAT Study. Abstract 774, 15th CROI 2008; Boston, MA;

Simon B, Grabmeier-Pfistershammer K, Rieger A, et al. HIV coreceptor tropism in antiretroviral treatment-naive patients newly diagnosed at a late stage of HIV-Infection. AIDS 2010, 24:2051-2058.

Snoeck J, Kantor R, Shafer RW, et al. Discordances between interpretation algorithms for genotypic resistance to protease and reverse transcriptase inhibitors of HIV are subtype dependent. Antimic Agents Chemoth 2006; 50:694-701.

Sista PR, Melby T, Davison D, et al. Characterization of determinants of genotypic and phenotypic resistance to enfuvirtide in baseline and on-treatment HIV-1 isolates. AIDS 2004; 18: 1787-94.

Skrabal K, Low AJ, Dong W, et al. Determining human immunodeficiency virus coreceptor use in a clinical setting: degree of correlation between two phenotypic assays and a bioinformatic model. J Clin Microbiol 2007, 45:279-84.

Stawiski E, Paquet A, Napolitano C, et al. Identification of novel mutations strongly associated with darunavir and tipranavir resistance and their trends in a commercial database. Abstract H-912, 50th ICAAC 2010, Boston, MA, USA.

Steigbigel R et al. Results from BENCHMRK-2, a phase III study evaluating the efficacy and safety of MK-0518, a novel HIV-1 integrase inhibitor, in patients with triple-class resistant virus. Abstract 789, 15th CROI 2008, Boston, MA, USA.

Svicher V, Alteri V, Artese A, et al. Different Evolution of Genotypic Resistance Profiles to Emtricitabine Versus Lamivudine in Tenofir – Containing Regimens, J AIDS 2010, 55; 336-344.

Swenson L, Dong W, Mo T, et al. Quantification of HIV tropism by “deep” sequencing shows a broad distribution of prevalence of X4 variants in clinical samples that is associated with virological outcome. Abstract 680, 16th CROI 2009,  Montreal, Canada.

Tural C, Ruiz L, Holtzer C, et al. Clinical utility of HIV-1 genotyping and expert advice: the Havana trial. AIDS 2002; 16:209-18. Abstract:

Truong HH, Grant RM, McFarland W, et al. Routine surveillance for the detection of acute and recent HIV infections and transmission of antiretroviral resistance. AIDS 2006; 20:2193-7.

Underwood M, St Clair M, Ross L, et al. Cross-resistance of clinical Samples with K65R, L74V, and M184V Mutations. Abstract 714, 12th CROI, Boston, MA, USA. http://www.retroconference.org/2005/cd/Abstracts/25534.htm

Valer L, De Mendoza C, De Requena DG, et al. Impact of HIV genotyping and drug levels on the response to salvage therapy with saquinavir/ritonavir. AIDS 2002; 16:1964-6.

Vandamme AM, Van Laethem, de Clercq E. Managing resistance to anti-HIV drugs. Drugs 1999; 57:337-361.

Vandekerckhove LPR, Wensing AMJ, Kaiser R, et al. Consensus statement of the Euro-pean guidelines on clinical management of HIV-1 tropism testing. Journal of the International AIDS Society 2010; 13 (Suppl 4):O7.

Vingerhoets J, Azijn H, Fransen E, et al. TMC125 displays a high genetic barrier to the development of resistance: evidence from in vitro selection experiments. J Virol 2005; 79:12773-82.

Vingerhoets J, Janssen K, Welkenhuysen-Gybels J, et al. Impact of baseline K103N or Y181C on the virological response to the NNRTI TMC125:  analysis of study TMC125-C223. Abstract 17, XV International HIV Drug Resistance Workshop 2006, Sitges, Spain

Vingerhoets J, Buelens A, Peeters M, et al. Impact of baseline NNRTI mutations on the virological response to TMC125 in the phase III clinical trials DUET-1 and DUET-2. Antiviral Therapy 2007;12:S34 (Abstract 32).

Vingerhoets J, Peeters M, Azijn H, et al. An update of the list of NNRTI mutations associated with decreased virologic response to etravirine (ETR): multivariate analyses on the pooled DUET-1 and DUET-2 clinical trial data. Abstract 24, XVIIth Int Drug Res Workshop 2008.

Walmsley S, Ruxrungtham K, Slim J, et al. Saquinavir/r (SQV/r) BiD versus lopinavir/r (LPV/r) BiD, plus emtricitabine/tenofovir (FTC/TDF) QD as initial therapy in HIV-1 infected patients: the GEMINI study. Abstract PS1/4, 11th European AIDS Conference 2007, Madrid.

Waters J, Margot N, Hluhanich R, et al. Evolution of resistance to the HIV integrase inhibitor elvitegravir can involve genotypic switching among primary INI resistance patterns. Abstract 116, XVIII IHDRW, 2009, Fort Myers.

Weber J, Chakraborty B, Weberova J, Miller MD, Quinones-Mateu ME. Diminished replicative fitness of primary human immunodeficiency virus type 1 isolates harboring the K65R mutation. J Clin Microbiol 2005; 43: 1395-400.

Weinheimer S, Discotto L, Friborg J, Yang H, Colonno R. Atazanavir signature I50L resistance substitution accounts for unique phenotype of increased susceptibility to other protease inhibitors in a variety of HIV type 1 genetic backbones. Antimicrob Agents Chemother 2005; 49:3816-24.

Weinstein MC, Goldie SJ, Losina E, et al. Use of genotypic resistance testing to guide HIV therapy: clinical impact and cost-effectiveness. Ann Intern Med 2001; 134:440-50.

Wensing AM, Boucher CA. Worldwide transmission of drug-resistant HIV. AIDS Rev 2003; 5:140-55.

Westby M, Smith-Burchnell C, Mori J, et al. Reduced maximal inhibition in phenotypic susceptibility assays indicates that viral strains resistant to the CCR5 antagonist maraviroc utilize inhibitor-bound receptor for entry. J Virol 2007;81:2359-71.

Whitcomb JM, Huang W, Limoli K, et al. Hypersusceptibility to non-nucleoside reverse transcriptase inhibitors in HIV-1: clinical, phenotypic and genotypic correlates. AIDS 2002; 16:F41-7.

White KL, Margot NA, Ly JK, et al. A combination of decreased NRTI incorporation and decreased excision determines the resistance profile of HIV-1 K65R RT. AIDS 2005; 19:1751-60.

Wiese N, Müller H, Hingst K, et al. Primary resistance mutations and polymorphisms in gp41-sequences of HIV-1 B-and non-B subtypes from Fuzeon-naïve patients. Abstract P174, 10. Deutscher und 16. Österreichischer AIDS Kongress 2005, Wien.

Wilkin T, Su Z, Kuritzkes D, et al. Co-receptor tropism in patients screening for ACTG 5211, a phase 2 study of vicriviroc, a CCR5 inhibitor. Abstract 655, 13th CROI 2006, Denver, Colorado, USA.

Wilson JW. Update on antiretroviral drug resistance testing: Combining laboratory technology with patient care. AIDS Read 2003; 13:25-38. http://www.medscape.com/viewarticle/448717

Wirden M, Malet I, Derache A, et al. Clonal analyses of HIV quasispecies in patients harbouring plasma genotype with K65R mutation associated with thymidine analogue mutations or L74V substitution. AIDS 2005; 19:630-2.

Wittkop L, (on behalf of the EuroCoord-CHAIN Joint Project Team) Impact of transmitted drug resistence (TDR)on virological and immunological response to initial combination antiretroviral therapy (cART) – EuroCoord – CHAIN joint project (2010). Abstract THLBB108, 18th IAC 2010, Vienna.

Xu L, Pozniak A, Wildfire A, et al. Emergence and evolution of enfuvirtide resistance following long-term therapy involves heptad repeat 2 mutations within gp41. Antimicrob Agents Chemother 2005; 49:1113-9.

Young B, Fransen S, Greenberg K et al.Transmission of integrase strand-transfer inhibitor multi-drug resistant HIV: case report and natural history of response to raltegravir-containing antiretroviral therapy. Abstract TUPE0163, 18th IAC 2010, Vienna.

NNRTIs

Resistenzmutationen

Efavirenz

L100l oder K101E oder K103N/H/S/T oder V106M

V108I (zusammen mit anderen NNRTI-Mutationen)

Y181C/(I) oder Y188L/C/(H) oder G190S/A (C/E/Q/T/V)

P225H (zusammen mit anderen NNRTI-Mutationen)

Nevirapin

A98G (insbesondere für HIV-1 Subtyp C) oder L100l

K101E/P/Q oder K 103N/H/S/T oder V106A/M oder V108I

Y181C/I/V oder Y188C/L/H oder G190A/S (C/E/Q/T/V)

Etravirin

≥ 2*-3 Mutationen aus (V90I, A98G, L100I, K101E/H/P, V106I, E138A/G/K/Q, V179D/F/T, Y181C/I/V, G190A/S, F227C, M230L)

*in Kombination mit einer fett gedruckten  Mutation

Leave a Comment

Filed under 10. Resistenzen und Tropismus, Teil 2 Antiretrovirale Therapie (ART)